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Abstract 

 
 

Formulations proposed in the literature for the Capacitated Warehouse 

(Facility or Plants) Location Problem (CWLP), are compared. The comparison, 

with main emphasis on (linear programming) LP-relaxations is based on some 

theoretical and computational results. The theoretical aspect compares some 

relations among the subsets of some constraints of the problem sets. On the other 

hand, the computational aspect compares the relaxations in terms of the quality 

of the lower bound the formulations produced when solved directly on some 

small size test problems, having various characteristics.  
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1.0 Introduction 
 

The Capacitated Warehouse (Facility or Plant) Location Problem (CWLP) is a well known combinatorial optimization 

problem. It is concerned with determining which warehouses to open from a given set of potential warehouses in different 

locations and also how to assign customers to these warehouses in-order to satisfy demand. The objective is to minimize total 

fixed and shipping costs. Constraints are such that each customer’s demand must be satisfied and that each warehouse cannot 

supply more than its capacity if it is opened. The problem class of CWLP we consider in this paper is a one stage single 

product CWLP. The model to solve this class of problems forms the core or generic model where some special cases of the 

problem are derived. The problem can be stated as follows; a single product is produced or stocked at some warehouses in 

order to satisfy customer’s demands; the product is then transported from these plants/warehouses to customers directly. On 

the other hand, the two-stage CWLP is the situation where a single product is produced at some plants (warehouses or 

facilities) in order to satisfy demands, and then the product is transported from these plants (warehouses, facilities) to some 

depots before sending it to customers. Other cases which are special classes of this problem are the one stage multi product 

CWLP, two stage multi product CWLP, etc and the P-median location problems. Further details can be found in [1, 2]. 

Applications of CWLP exist in the literature which have nothing to do with warehouse location. For example the same 

mathematical model is appropriate in the areas of production scheduling with set up costs, telecommunication network design 

and machine replacement and as the basis for some heuristics in vehicle routing, where vehicles have unequal capacities [3, 

4]. Methods of solving CWLP can be found in [2, 3 and 4] and the references there in. The rest of the paper is presented as 

follows; section two is the various problem formulations, section three is the LP-relaxation, section four is the computational 

results and discussion while section five is the conclusion, followed by the references. The test problems can be found in 

either [5] or [6]. 
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2.0 Problem Formulation 
A general and well known Mixed Integer Programming formulation of CWLP is as follows [2, 3, 7, and 8]: Suppose there are 

m possible locations for warehouses to supply a commodity for shipment to n demand points; define a binary variable     , 

that corresponds to the use (open) or disuse (close) of warehouse at location i, according as to whether    is 1 or 0; if it is 

operational    is 1 otherwise it is 0. The capacity of the warehouse in this case is    and if the location   is used then a fixed 

cost    is incurred. A cost     is also incurred for transporting a fraction (or percentage)      of the demand    from location i, 

to demand point j. The total volume at the location , is  ∑        . The problem to solve is then: 

 

          ∑ ∑            ∑            (1) 

 

Subject to ∑                           (D) 

 

                                    (B) 

  

  ∑       ∑                        (T) 

   

  ∑                                      (C) 

   

  ∑                                  (K) 

   

  ∑                                (L) 

   

  {
       

      
                       (N) 

   

                                  (I) 

The constraints (B) and (T) (not usually found in the formulation of CWLP) are called variable upper bound (VUB) and total 

demand constraints respectively. These two constraints are implied by the constraints (D) (called generalized upper bound, 

GUB, which says that all demand must be satisfied), (C), (N), and (I). To see that (B) is valid for CWLP observe that 

          by constraint (I). When     , (B) follows from       in (N) and when     , (C) implies that       (using 

              ) therefore (B) holds [8]. Similarly (T) is valid from the constraints (C) and (K). 

 

Because of alternative formulations of the same problem, where a feasible set can be represented by different set of 

constraints, the various formulations of (1) are obtained by combining some of the constraint sets above. These derived 

formulations differ both in the quality of the lower bound they produce and the degree of ease of computation, [5]. 

 

The following notations were used conventionally except where otherwise stated. 

Let:          , be the sets of equality or inequality constraints. 

             , the feasible region defined by the constraints          . 

                , be the convex hull of the corresponding region.     ,   ̅    denote optimal objective values for the 

integer and lp-relaxation problems respectively corresponding to the problem formulations.  

 

The following are eight various formulations derived for the general CWLP which correspond to some formulations reported 

in the literature. Later we would show by our computational study that these eight formulations reduced to three equivalent 

sets of formulations. 

In several works [10, 11, 12, 13, 14 and 15] the so called weak formulation of (1) was studied and solved. The formulation is 

weak because of the absence of constraint sets (D) and (B) [6]. The formulation is as follows; 

 

         ∑ ∑            ∑             (2) 

       

                                 
 

Disaggregated version of (2) as reported in [2], is the problem with (L) replaced by         

                             . Suppose we denote this constraint by   ́ . Hence we have: 

 

          ∑ ∑            ∑             (3) 
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             ( ́)                  

(3) Provides an LP-relaxation that is superior to (2), i.e the latter is tighter than the former and is more suitable to use in some 

algorithmic schemes such as Branch and Bound and lagrangean relaxation [7, 9]. 

 

The so called strong formulation of (1) was studied in [6, 16]. Because of the presence of the constraints sets (B) and (D), this 

formulation give a tighter lower bound than the previous two formulations when constraint (I) is relaxed. It is given as 

follows; 

  

         ∑ ∑            ∑            (4) 

       

                                      Relaxed 

 

In certain applications of CWLP, demand for a customer must be supplied from a single warehouse (i.e CWLP with 

indivisible demand). This formulation, presented in [17], is given as follows: 

 

        ∑ ∑            ∑            (5) 

       

                                      

Where      has replaced (N), given as                          . This constraint ensures that each customer is served 

from only one warehouse.  

 

In a situation where the customers’ demands are all equal, say                 this differs from (5) by replacing (C) with  

∑               . Computationally these two similar formulations are the same in terms of the lower bound obtained when 

solved. We therefore have not listed it here [4]. 

 

The formulation in [9] is almost the same with the generalized CWLP shown above and is given as follows; 

 

         ∑ ∑            ∑            (6) 

       

                                         
 

Computationally (6) is among the three best formulations of CWLP in terms of the lower bound it produces.  

In [18] another parameter is defined as                 which is augmented within the constraint sets, and the constraint 

(K) was expressed in terms of (≥) inequality rather than equality as the previous cases. The CWLP using these changes is 

defined as: 

 

  

         ∑ ∑            ∑            (7) 

       

                ̀             and                      

 

where     ̀  is (K) with “=” being replaced by  ” ≥”. 

 

A disaggregated form of (7) with the constraint (L) replaced by 

                                                               . Denote this by ( ́); thus we have 

         ∑ ∑            ∑            (8) 

       

                ̀  ( ́)        and                        

  

Another interesting thing is that [19] obtained a tighter lower bound by appending to the relaxed (7), the constraints     

                   The authors however did not use direct LP solution to solve the resulting model, instead they used Benders 

decomposition. Their formulations is as follows: 

 

         ∑ ∑            ∑            (9) 
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               ̀         ( ̀)                       and                       . 

 

3.0 LP-Relaxations 
Formally, a relaxation of a minimization problem is defined as follows [20]: 

Definition: Problem                 |       is a relaxation of problem         
       |      , with the same decision variables, iff 

i.       contains      i.e            

ii. Over     , the objective function of      dominates (i.e is better than) that of     i.e                       
where    . 

 

It clearly follows that the optimal value of    is less than or equal to the optimal value of   i.e,   ̅̅ ̅̅          , since    has 

more feasible solutions than  ; the objective function value,   ̅̅ ̅̅     , of    is better than (smaller than) that of  , thus it has a 

smaller minimum. 

The potential usefulness of any relaxation,  ̅    of Z, being LP or Lagrangean relaxations is largely determined by how near 

its optimal value is to that of Z. One of the basic challenges faced in the design of any algorithm for Z is which relaxations to 

use for lower bounding in the case of minimization. The chosen relaxation must be a suitable compromise between ease of 

computation on one hand and tightness of the resulting bound on the other. Generally a relaxation which produces a very 

tight (better) lower bound on the optimal value of Z will be very expensive to compute, whereas an easily optimized 

relaxation is likely to result in relatively poor bounds, which may affect the convergence of any scheme to solve Z [4, 7, 8, 

20]. We concentrate here on the most obvious choice of relaxing Z, i.e the continuous LP relaxations, i.e problem Z with the 

integrality restriction on constraint (I) dropped i.e                 . This relaxation exploits the remarkable efficiency of 

modern LP system based on the presence of GUB constraint (D) which constitutes a large fraction of all constraints. 

 

It was reported in [7] that computational experience indicates that the tightness of the lower bound obtained by Lp-

relaxations leaves much to be desired. They observed that on the test problems they used, there is an average gap of more 

than 7% between the optimal values of           ̅   ; coincidently we recorded almost the same observation on the test 

problems we compute, with some few exceptions where there is less than 1% or even 0% gap between            ̅   ; see 

Tables 2 through 9. 

 

It was also reported in [20, 21] that if the so called lagrangean dual problem has what they call integrality property (i.e if 

dropping the integer restriction on the sub-problem does not yield a better result than the usual LP relaxation) then the 

Lagrangean relaxation solution coincides with the usual LP relaxation. However, [21] emphasized that the integrality 

property is not defined relative to a given problem class, but relative to a given integer (pure or mix) programming 

formulation of a problem class. This is an important distinction because a problem class often has more than one formulation 

as shown in section two of this paper. (Investigation on the integrality property of the formulations considered here is on 

course and will soon be communicated, since this can only be achieved through Lagrangean relaxation which is not in the 

scope of this paper). In Theorem 1 of [20], a summary of some of the basic relationships between Z and RZ in the context of 

lagrangean relaxation were presented and these were also studied in [4]. RZ is the LP relaxation of Z.  

 

4.0 Computational Results 
 

Our computational study compares the relaxations  ̅       to the optimum integer value       . The relative quality of 

the bound is measured by 

          
      ̅   
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TABLE 1: CHARACTERISTICS OF TEST PROBLEMS 

 

S/NO Problem 

Size 

Name Supply    demand    Fixed charge    Shipping cost     

 

1 

  

3x4 

 

A34 

Different for each i, with more 

than 80% >dj and fi 

Different for each j, but 

100% < both si and fi 

Same for all i.  Single digits no zeros all 

routes allowed. 

 

2 

 

5x4 

 

B54 

Same for each i, and generally 

>dj 

Same for each j, but less than 

both si and fi 

Different for each i, 

mostly> both si and dj 

 two digits no zeros all 

routes allowed 

 

 

3 

 

 

5x6 

 

 

C56 

 

Different for each i, mostly 

greater than dj 

 

Different for each j, mostly < 

si 

 

Multiples of hundred, > 

sum of si and dj 

Two digits, within the 

range of si and dj, all 

routes allowed. 

 

 

4 

 

 

5x8 

 

 

D58 

 

 

Same for each i, > dj 

 

 

Same for each j, and < si 

 

 

In thousands 

In multiples of hundreds 

some routes not allowed 

 

 

5 

 

 

5x8 

 

 

E58 

 

 

80% different, > dj 

 

 

60% the same, 90% < si 

 

Different for each i and in 

multiples of ten 

Two digits with decimals, 

some routes not allowed 

 

6 

 

10x10 

 

F1010 

 

Same for all i, > dj 

 

Same for all j and < si 

Multiples of 100 >> si and 

dj 

In tens with few routes not 

allowed. 

 

 

7 

 

 

10x15 

 

 

G1015 

 

 

Same for all i, > dj 

 

Same for all j all less than si 

Different for each i, 

Multiples of hundreds, > si 

and dj 

 

Two digits with a lot of 

routes not allowed 

 

 

8 

 

 

15x15 

 

 

H1515 

 

 

Different for each i, > dj 

 

 

Same for all dj , < si 

Multiples of thousands 

Same for all i, 

 

In tens with all routes 

allowed 

 

9 

 

15x15 

 

I1515 

 

Different for all i. 

 

Different for all j 

In thousands Same for all i, 

>> si and dj 

 

Sparsely represented 

 

10 

 

15x15 

 

J1515 

Different for each i, same 

range with dj 

Mostly different for each j Multiples of hundreds, >> 

both si and dj 

In tens and a lot of routes 

not allowed 
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Table 2: Computational Results for (2)   Table 3: Computational Results for (3) 

Instance       ̅           

A34 3770 3204 15% 

B54 312 303 2.9% 

C56 1859 1382 26% 

D58 11520 9120 21% 

E58 535 460 14% 

F1010 1774 715 60% 

G1015 2537 1209 52% 

H1515 10000 1195 88% 

I1515 2131 1739 18% 

J1515 470 470 0% 

 

Table 4: Computational Results of (4)   Table 5: Computational Results for (5) 

Instance       ̅           

A34 1007 844 16% 

B54 220 201 9% 

C56 1759 1687 4% 

D58 42362 40162 5% 

E58 344 331 4% 

F1010 1440 918 36% 

G1015 3427 3046 11% 

H1515 10264 10264 0% 

I1515 9019 8126 10% 

J1515 11542 10799 6% 

 

    

Table 6: Computational Results for (6)   Table 7: Computational Results for (7) 

Instance       ̅           

A34 3820 3491 9%                        

B54 412 397 4% 

C56 2622 2115 I9% 

D58 44170 41970 5% 

E58 767.5 764.5 0.4% 

F1010 2280 1758 0.23% 

G1015 4230 3746 11% 

H1515 10528 10380 1.40% 

I1515 9209 8417 7% 

J1515 11789 10973 7% 

 
    

Table 8: Computational Results for (8)   Table 9: Computational Results for (9) 

Instance       ̅           

A34 3820 3491 9%                        

B54 412 397 4% 

C56 2622 2115 I9% 

D58 44170 41970 5% 

E58 767.5 764.5 0.4% 

F1010 2280 1758 0.23% 

G1015 4230 3746 11% 

H1515 10528 10380 1.40% 

I1515 9209 8417 7% 

J1515 11789 10973 7% 

 

 Unlike Lagrangean relaxations [1, 5, 7, 12, 15, 20, and 21], Lp-relaxations are not instance dependent [1], but 

depend on the formulation used, as shown in Tables (2 - 9). Table 1 shows the characteristics of the test problems used. The 

formulations of the optimization models presented in section two were coded in the syntax of the modeling language AMPL 

[22], and complete problems instance were solved by the system CPLEX 11.2.0. 

From Tables 2-9, we have the following; 

 

Remark 1: the following formulations are equal 

i.         

ii.             

iii.             

Few comments will be appropriate as follows: 

From (i), (3) is the disaggregated version of (2) as suggested in [2], and     is the disaggregated version of   , from [18] , 

and they yield the same bound on Z. 
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From (ii), the problem studied in [6, 16], [17] and [15] correspond to                 respectively. They also yield the same 

bound on Z. The presence of GUB and VUB constraints in these formulations suggest the superiority of the formulations. 

 

From (iii), the problems studied in [10, 12, 13, 14, and 15], [18] and [19] correspond to                  respectively and 

the formulations yield the same bound on Z. These bounds, produced by (iii) are weaker than the two other bounds obtained 

through (i) and (ii). From the foregoing and coupled with the results in Table 10 we have the following remark. 

 

 

 

 

Remark 2: the following relations are valid on the optimal objective values of Z and RZ 

 

i.                                         

ii. (  
̅̅ ̅      

̅̅ ̅      
̅̅ ̅   )     

̅̅ ̅      
̅̅ ̅      

̅̅ ̅     

From A34 to F1010 of the test problem i.e (about 60%) 

iii.                                   , also ,  ̅      ̅      ̅     < ( ̅      ̅      

But from G1015 to J1515 of the test problem i.e as the size increase (about 40%) 

iv.                                  , also,  ̅      ̅        ̅      ̅      ̅      

 

Table 10:  Summary of Results 

 

Instance (2), (7) and (9) 

          

(4), (5), (6) 

       

(3), (8) 

       ̅          ̅          ̅    

A34 3820 3491 1007 844 3770 3204 

B54 412 397 220 201 312 303 

C56 2622 2115 1759 1687 1859 1382 

D58 44170 41970 42362 40162 11520 9120 

E58 767.5 764.5 344 331 535 460 

F1010 2280 1758 1440 918 1774 715 

G1015 4230 3746 3427 3046 2537 1209 

H1515 10528 10380 10264 10264 10000 1195 

I1515 9209 8417 9019 8126 2131 1739 

J1515 11789 10973 11542 10799 470 470 

 

5.0 Conclusion 
 

In this paper we have studied Lp relaxation of some formulations of single stage CWLP from   two different angles; 

quality of lower bounds among the corresponding formulations that suits one modeling purpose and which yields a relaxation 

that can be easily solved among those that yield the same bound. Because of the presence of GUB and VUB constraints, the 

strong LP-relaxation is relatively easy to solve and provide useful bounds for used in branch and bound algorithms. 

The computational results revealed that for the three groups of formulations that yield same bounds, i.e {(2), (7), (9)} 

{(4), (5), (6)} and {(3), (8)} on the instances having large fixed charges have large integrality gaps than those in the 

intermediate range. 
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