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Abstract 
 

 

In this work, the ranking of the performances of two-equation simultaneous models 

when outliers are presumed present in a convoluted exogenous variable is carried out. The 

exogenous variable is a convolution of normal and uniform distribution. Monte Carlo 

experiment was carried out to investigate the performances of four estimators namely: 

Ordinary Least Squares (OLS), Two Stage Least Squares (2SLS), Limited Information 

Maximum Likelihood (LIML) and Three Stage Least Squares (3SLS). Five sample sizes 

were used to allow for measure of asymptotic properties of these estimators. The experiment 

was replicated 1000 times and the results were evaluated using Total Absolute Bias (TAB), 

Variance and Root Mean Squared Error (RMSE). It is observed that the performances of 

the estimators when lower triangular matrix is used are better than that of upper triangular 

matrix. OLS using TAB as evaluation criterion is better than the other estimators when an 

exogenous variable is convoluted for the just-identified equation. The performance of 2SLS 

is best for the over-identified equation. OLS possesses the least variance for both equations 

and both matrices while LIML has the worst variance in most cases. OLS possesses the 

smallest RMSE for both matrices and equations except with the over-identified equation 

using lower triangular matrix when an exogenous variable is convoluted. 
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1.0 Introduction 
 

The assumption of normality is central to most statistical procedures. With real life data, in some cases this assumption 

holds approximately while it may not hold in other cases. This violation may be attributed to a number of factors among 

which are outliers. Outliers are either legitimate or illegitimate observation far away from the rest of the observation. Outliers 

often come from a family of approximately normal distribution with heavy tail or long tail [1, 2]. These distributions are 

mostly convolutions of two or more distributions [1]. Outliers have distorting influence on the statistical procedures [1, 2, 3], 

especially when the underlying distribution is normal. Outliers could also contain useful information on abnormal behavior of 

the system being described by the data [4]. This behavior is often explore in a number of applications such as credit card 

fraud, financial applications, marketing and host of other areas. 

This has lead to some researchers suggesting robust inference as alternative [5] and some are even of the opinion that the 

normality assumption be substituted with that which accommodate heavy tail distribution (such as the multivariate-t 

distribution ) [6] or scale mixtures of normal distribution [7]. 

A good number of estimators that are robust to outliers have been developed. These estimators such as the Generalized 

Median of Slopes [8], M-estimators [9], MM-estimator [10],   estimates [11] and host of other estimators were developed 

for linear regressions. Those that were developed for simultaneous equation are often a modified version or weighted 

versions of the established classical estimators e.g. the weighted 2SLS considered by [12]. Despite these development, most 

statistician still shows preference for the classical estimators and yet, they neither test for the assumptions nor check for 

outliers [3].  

In this work attempt is made to compare and rank some simultaneous equation estimators when one of the variables is 

assumed to come from quasi-uniform distribution instead of the uniform distribution [13] as found in most literature. The 

underlying distribution of the error term is still assumed to be normal. This is done in other to simulate a real life scenario 

where outliers are present in a variable. Ordinary Least Squares (OLS), Two Stage Least Squares (2SLS), Limited 
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Information Maximum Likelihood (LIML) and Three Stage Least Squares (3SLS). 

 

2.0 Model Specification 
Consider the two-equation simultaneous model 
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where 12  and 21 are the parameter of the endogenous variables 
2iy and 

1iy respectively,  1,2; 1,2,3rc r c   are the 

parameters of the  exogenous variables cix  and ri  are the disturbance terms. 

This model can represented more compactly by 
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The first equation of the model is said to be over-identified, since the total number of variables excluded from it but included 

in other equation of the model is greater than the number of equation less one, while the second equation is just-identified. 

Outliers were introduced into the exogenous variable 2x , by assuming that 2x
 
is a convolution of the variables 1z  and 2z

 

(i.e.  2 1 2x z z  ) where     (   )and     (   ) .Thus    follows uniform distribution while    follows normal 

distribution.  The other exogenous variables are assumed to come from (0,1)U [13]. Thus; 
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The function 
2 2( )Xf x is a quasi-uniform distribution with heavy tail. Hence 2ix  was simulated from a distribution with 

heavy tail. As an illustration of the possibility of the sample from the above distribution containing outliers, consider the 

Tables 1a and 1b. 

Table 1: Sample data simulated from  (0,1)U
 
and (0,1)N  

i z1i z2i x2i  I z1i z2i x2i 

1 0.198675 -0.84636 -0.64769 16 0.498459 -0.00386 0.494596 

2 0.915006 1.372241 2.287247 17 0.754509 0.688748 1.443257 

3 0.786218 0.793366 1.579584 18 0.868648 1.120025 1.988673 

4 0.589343 0.225855 0.815198 19 0.459517 -0.10165 0.357868 

5 0.015595 -2.15464 -2.13904 20 0.649861 0.384946 1.034807 

6 0.768059 0.732471 1.50053  

7 0.784173 0.786365 1.570538 

8 0.583666 0.211282 0.794949 

9 0.741081 0.646681 1.387762 

10 0.483291 -0.04189 0.441396 

11 0.412458 -0.22123 0.19123 

12 0.353404 -0.37615 -0.02274 

13 0.326456 -0.44972 -0.12326 

14 0.645009 0.37188 1.016889 

15 0.138127 -1.08877 -0.95065 

      (a) 
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i z1i z2i x2i  I z1i z2i x2i 

1 0.36198 -0.35317 0.008808 16 0.51561 0.039139 0.554749 

2 0.697012 0.515827 1.212839 17 0.608203 0.27464 0.882843 

3 0.258827 -0.64696 -0.38814 18 0.532945 0.082674 0.615619 

4 0.689047 0.493151 1.182198 19 0.281442 -0.57856 -0.29712 

5 0.011689 -2.26721 -2.25552 20 0.458266 -0.1048 0.353463 

6 0.340403 -0.41136 -0.07096  

7 0.21015 -0.8059 -0.59575 

8 0.534562 0.086743 0.621305 

9 0.18778 -0.8861 -0.69832 

10 0.211585 -0.80094 -0.58935 

11 0.64742 0.378363 1.025783 

12 0.993286 2.472207 3.465493 

13 0.285928 -0.56532 -0.27939 

14 0.807947 0.870356 1.678303 

15 0.419477 -0.20323 0.216246 

 

      (b) 

 

The convoluted variable 2ix
 
from the samples are plotted in Figure 1 ((a) and (b)) below. 

  

 

Figure 1: Graphs of sample data in Table 1 (a) and (b) 

 

From Figure 1(a), the lowest observation i.e. value at 5i   (-2.13904) appears to be an outlying observation. To confirm 

this, the value is subjected to Grubbs test for outliers [14]. Using the Grubbs 1T  test statistic  

1
1

( )x x
T

s


           (5) 

where x  is the sample mean, 1x  is the lowest observation and s  is the sample standard deviation.  
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The mean is 0.65106 and the sample standard deviation is 1.0724, thus substituting into (5), the statistics 

1

0.65106 ( 2.13904)
2.60173

1.0724
T

 
        (6)  

For n = 20, the Grubbs critical value for 5% level of significant is 2.56 which is less than 2.60173. Hence, it can be 

concluded that the value -2.13904 is an outlier. 

In Figure 1b, two values (-2.2555 and 3.46549 at 5i  and12 respectively) appear to be outlying observations. Since these 

values are the lowest and greatest observations and no independent estimate of the variance is available, the ratio of range to 

sample standard deviation test of David et al [15] is used. The test statistic is 

1nw x x

s s


           (7) 

where w , nx , 1x  and s  are sample range, greatest observation, lowest observation and sample standard deviation 

respectively. 

The sample standard deviation is 1.15083, thus substituting into (7), the statistic 

3.46549 ( 2.2555)
5.4254

1.15083

w

s

 
         (8) 

For n = 20, the critical value for 5% level of significant as tabulated by David et al is 4.49 which is less than 5.4254. Thus, 

both extremes are either outliers or one of the extreme is an outlier. Since the sample mean of the observations is 0.33215, 

these extremes are 3.13334 units above and 2.58767 units below it. The extremes are not symmetric about the mean and the 

greatest observation (3.46549) is farther therefore it’s either both are outliers or only 3.46549 is an outlier.  That 3.46549 is 

an outlier can be verified by the use of Grubbs nT  statistic below. 

( )n
n

x x
T

s


           (9) 

The statistic 2.72267nT   and it is less than the critical value for 5% level (2.56). Since it has been confirmed that 3.46549 

is an outlier, the remaining 19 observations are considered as new sample. Using (5) as illustrated above, the lowest 

observation (-2.2555) is also an outlier. 

 

3.0 Methodology 
Simultaneous equation estimators are based on assumptions, such as normality assumption which gives no room to most 

problems (such as multi-collinearity, autocorrelation, errors of measurements, problems of outlier and so on) that are 

associated with most real life econometric data [16]. To examine the effect of any of these problems on the estimators, there 

is a need to isolate the problem from the rest. This is impossible without Monte Carlo experiment where data synonymous to 

real life data but devoid of other problems could be generated. Thus in this work, Monte Carlo method was employed in 

investigating the performances of the estimators.  

The parameters  and  of model (1) were fixed as  
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The unequal variability of the endogenous variable (as it’s often the case with most real life data) was introduced by 

assuming that the variance covariance matrix is given by 

5.0 2.5
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                   (11) 

To generate the endogenous variable with the above variance-covariance structure, there is a need to decompose (11) into 

upper triangular matrix 1P  or lower triangular matrix 2P . Such that k kP P   ,  1,2k  . Both cases were examined. 

I Suppose  
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, i.e. when 1k  . Then,  
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Multiplying (the matrices on the LHS), equating the elements and simplifying yields 
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then if  is as given by (11), performing backward substitution on (13) gives 

  1

1.707825128 1.443375673

0 1.73205808
P
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  
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                 (14) 

II Similarly, for 2k  ,   is decomposed using a lower triangular matrix
11
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, such that 2 2P P   , 

then 2P  is obtained as 
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The generation of the endogenous variable is in 2 stages. Firstly the disturbance terms are generated using the triangular 

matrix above. This is achieved using equation (15) below. 

  kU P E                   (15) 

where 
1

2

t

t





 
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 
 is Gaussian distributed random error. 

Finally, the exogenous variables, the disturbance terms and the fixed parameters were used to generate the endogenous 

variables using the reduced form equation below. 

 
1 1y x U                        (16) 

The experiment is performed using sample sizes n = 20, 40, 60, 80, 100 and replicated 1000 times each. 

 

4.0 Results 
The results of the experiment are evaluated using three criteria, namely: Total Absolute Bias (TAB), Variance and Root 

Mean Square Error (RMSE). The results are examined across the sample sizes when 2x  is convoluted and when it is not 

convoluted and for lower and upper triangular matrices. Using TAB, the parameter estimates of OLS are inconsistent for the 

case of no convolution but decrease consistently with increase in sample size for the case when the variable 2x  is convoluted 

for the over-identified equation. For the parameters of the just-identified equation, OLS is inconsistent for both cases of when 

2x  is convoluted and when it is not convoluted. The parameter estimates of OLS are smallest for the just identified equation 

for convoluted 2x
 
using TAB. 2SLS and 3SLS consistently decrease for the over-identified equation but are inconsistent for 

the just identified equation. LIML is inconsistent for both equations but possesses the lowest TAB for the just identified 

equation when no variable is convoluted.  

Surprisingly, the results obtained with the convolution tend to have lower TAB than those without convolution. Using 

lower triangular matrix, though the performances of the estimators are similar to that of the upper triangular matrix, but the 

TAB values are higher. Table 2 shows the ranking of the estimator.   
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Table 2: Results Using Total Absolute Bias 
Equation Upper triangular Matrix Lower Triangular Matrix 

No Convolution Convoluted No Convolution Convoluted 

Just Identified 3SLS OLS LIML OLS 

LIML 3SLS 3SLS 3SLS 

2SLS 2SLS 2SLS LIML 

OLS LIML OLS 2SLS 

Over-Identified 2SLS 2SLS 2SLS 2SLS 

3SLS 3SLS 3SLS 3SLS 

LIML OLS LIML LIML 

OLS LIML OLS OLS 

 

Using Variance in evaluating the estimators, OLS possesses the smallest variance of all estimators though inconsistent 

for the parameters of the endogenous variables. For all the parameters, excluding the parameters of the exogenous variables 

in the just-identified equation, variance of OLS when no variable is convoluted is smaller than when an exogenous variable is 

convoluted. When lower triangular matrix is used, the variance OLS still remains the smallest and it consistently decreases as 

the sample size increases. Also, with lower triangular matrix, the variance of the estimators when no variable is convoluted is 

smaller than the variance when an exogenous variable is convoluted for both equations. The variance obtained with using the 

lower triangular matrix is considerably smaller than that obtained using the upper triangular matrix. 

Table 3: Results Using Variance 
Equation Upper triangular Matrix Lower Triangular Matrix 

No Convolution Convoluted No Convolution Convoluted 

Just Identified OLS OLS OLS OLS 

2SLS 2SLS 2SLS 2SLS 

LIML 3SLS LIML LIML 

3SLS LIML 3SLS 3SLS 

Over-Identified OLS OLS OLS OLS 

2SLS 2SLS 2SLS 2SLS 

3SLS 3SLS 3SLS 3SLS 

LIML LIML LIML LIML 

 

Using the RMSE, OLS possesses the smallest RMSE for all the estimators except for the over-identified equation when an 

exogenous variable is convoluted. The RMSE obtained with an exogenous variable convoluted is quite in the same range as 

with a variable convoluted but the performances using the lower triangular matrix is better than that of the upper triangular 

matrix for both equations.  

Table 4: Results Using RMSE 
Equation Upper triangular Matrix Lower Triangular Matrix 

No Convolution Convoluted No Convolution Convoluted 

Just Identified OLS OLS OLS OLS 

2SLS 2SLS 2SLS 2SLS 

LIML LIML LIML 3SLS 

3SLS 3SLS 3SLS LIML 

Over-Identified OLS OLS OLS 2SLS 

2SLS 2SLS 2SLS 3SLS 

3SLS 3SLS 3SLS OLS 

LIML LIML LIML LIML 

 

 

5.0 Conclusion 
Since most real life data comes from a distribution with heavy tail or longer tail, we assumed a convolution of the normal 

and uniform with the hope to obtaining a flat-tailed distribution which may possibly contain outlier. A mixed model of one 

over-identified and just-identified equation was assumed as most practical models are of mixed status. 

A Monte Carlo experiment was performed to examine performances of four estimators of parameters of simultaneous 

equation econometric models namely; OLS, 2SLS, LIML and 3SLS under the condition described above. The estimates were 

subjected to 3 evaluation criteria. The performances of the estimators when lower triangular matrix is used are better than that 

of upper triangular matrix. The performance of OLS using TAB as evaluation criterion is better than those of the other  
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estimators when an exogenous variable is convoluted for the just-identified equation while the performance of 2SLS is best 

for the over-identified equation. Using variance as evaluation criterion, OLS possesses the least variance for both equations 

and both matrices while LIML has the worst variance in most cases. Using RMSE, OLS possesses the smallest RMSE for 

both matrices and equations except with the over-identified equation using lower triangular matrix when an exogenous 

variable is convoluted. 

It must be stressed that the performances varies depending on the criteria employed. A bias estimator with lower 

variance may eventually be the best estimator using RMSE since variance could compensate for the larger bias.  
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