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Abstract 

 
 

Efficiency of random sampling for rare and spatial clustered populations is usually 

improved by either increasing the sample size or plot size in area sampling or both. 

Recently Thompson (1990) introduced a sampling method, called adaptive cluster 

sampling, which gives more precise estimate of parameters of rare events. In adaptive 

cluster sampling, in addition to the initial sample units, further units are canvassed 

depending on whether or not the required event is found in the initial sample unit or its 

neighbourhood. In this paper, our main aim is to introduce this method and to give a 

brief review of some research works in the area. 

 

 

1.0 Introduction 
The purpose of any sample survey is to estimate the population characteristics of interest. In conventional sample survey 

a probability sample is taken and each sample unit is observed for the variable (s) of interest and estimate(s) of the population 

parameter(s) is (are) formed based on the observed sample values. Any other population units outside the selected ones are 

not observed.  In a population that has rare characteristics that are widely sparse or empty in some areas but dense or 

clustered in some other areas of the population or region, (for example fish or snail population or incidence of a rare 

contagious disease, land or water pollution, endangered species, in general populations that exhibit natural aggregation) the 

conventional sampling may not yield a good estimate of the population density of such rare characteristic because most of the 

sample units (areas) will be empty.  In conventional sampling the solution to the rare event problem is to increase the sample 

size or the plot size in area sampling. This procedure seems not to be generally adequate. This led to search for a better 

sampling design outside of the conventional designs. 

For population of this nature, Thompson [1] came up with a new sampling method, which produces an efficient estimate 

for rare characteristic, termed adaptive cluster sampling (ACS). In adaptive cluster sampling, an initial random sample of a 

given size is selected. A selected unit is observed, if it contains the characteristic of interest that satisfies a specified 

condition, the adjacent units of this initial unit (called neighbourhood units) are observed. Neighbourhood may be social or 

institutional relationship or may be based on degree of affinity or participation. If any other unit in the neighbourhood has the 

variable of interest that satisfies the set condition, its neighbourhood is also observed and added in the sample and so on, until 

no new unit satisfies the condition. These units including the edge units (units not meeting the set condition) form a cluster of 

units around the initial sample unit. Thus the addition of an adaptive unit depends on the observed value of the variable of 

interest and the set condition. All the units satisfying the set condition associated with the initial sample unit form what is 

called a network. Clearly, a network is a subset of the cluster.  Basically, adaptive cluster sampling makes use of information 

obtained from an initial selected unit to determine whether to canvass for additional information from the adjacent units, not 

minding if this unit was originally in the sample or not. 

 

2.0 Advantages and Disadvantages of Adaptive Cluster Sampling 
 

The advantage of ACS is that in a multi-characteristic survey, a characteristic of interest may be rare and spatially 

clustered while others are not; the use of adaptive cluster sampling for one such characteristic will not affect the cost of 

observing and estimating other characteristics. Secondly, additional cost of sampling is triggered only when the characteristic 

of interest is observed. The third advantage is that ACS may help in identifying area of high abundance thereby increasing 

the information provided by the sample especially where disturbance does not initiate dispersion of species of interest. 

 

Corresponding author: -, 
 
 E-mail: -, Tel. +234 8057282029 

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 225 – 232      

mailto:fwangshaktele@yahoo.co.uk


226 

 

Adaptive Cluster Sampling – A Review.   Okafor     J of NAMP 

 
The disadvantages include:  In ACS the final sample size is not known until further addition of more units is terminated 

as a result the final sample size is random. Because of the random nature of the sample size, it is not feasible to determine the 

cost of the survey in advance. According to Smith et al [2] sampling of edge units is a penalty imposed by ACS, because 

edge units add to the cost of the survey but are not used in estimation unless the edge unit is part of the initial sample.  

 

In the next sections we shall present some of the works done in ACS based on element sampling and other sampling 

designs. The articles are not exhaustive, only very few are presented here just to give an insight into the method of ACS. 

 

3. ADAPTIVE CLUSTER SAMPLING PROPOSED BY THOMPSON [1] 

 

Thompson [1] is the pioneer of ACS, which involves the selection of initial sample of n units by simple random sampling 

with or without replacement.  

 

He gave two unbiased estimators of the population mean by modifying Hansen-Hurwitz and Horvitz-Thompson estimators. 

Since selection probability is not known for every unit in the final sample his estimators made use of observations not 

satisfying the condition only when they are selected as part of the initial sample.  This gives the ACS modified Hansen-

Hurwitz estimator of the mean as 
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kA  denotes the network that includes unit k  and km  is the number of units in kA  network. This estimator is similar to 

mean of cluster mean in single stage cluster sampling. The sampling variance of 1t  is given by  
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for simple random sampling without replacement. 

And 
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for simple random sampling with replacement. The modified Horvitz-Thompson estimator of the mean is 
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ky   is the sum of the y-values in the 
thk  network;   is the number of distinct networks in the sample. k  is the probability 

that 
thk  network is included in the sample. This probability is the same for all units in the 

thi  unit’s network. 
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for simple random sampling without replacement. 
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for simple random sampling with replacement. 

Thompson [1] gave the sampling variance of 2t  as 
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  is the number of mutually and exhaustive networks in the population. 
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is the joint inclusion probability of networks jk  and . 

jkp  is the probability of excluding networks jk  and in the sample. 
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Thompson [1] has shown that ACS can be more efficient than ordinary simple random sampling. 

 

4.0 Illustration 
 

Figure A shows an initial sample of n =8 plots (in bold and numbered a, b, c, d, e, f, g, and h) selected from N=528 plots 

in the population by simple random sampling without replacement.  

Each sample plot is searched, if the number of diseases trees, 1iy is found in the plot its adjacent plots forming a 

plus sign called neighbourhood are also searched. If any of these adjacent plots satisfies the condition it is adaptively added 

in the sample; while its neighbourhood plots are canvassed and added if the condition is met.  This continues until no further 

plot meets the condition. All the adaptively added plots and those at the adjacent boundaries not meeting the condition make 

up the adaptive cluster sample.  The plots at the boundary of the adaptive cluster not fulfilling the condition are termed the 

edge units. Adaptive cluster minus the edge units constitute a network. Figure B shows the networks in heavy bold. There are 

8 distinct networks intersected by the 8 sample plots. We shall number the networks serially from a through h. 

 

From Figure B we generate the following information in Table 1. 

Table 1: Information generated from figure B on networks a to h. 

Network, k 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8 (h) 

Size, km  1 1 7 1 17 1 13 1 

ky  0 1 31 0 81 0 67 0 

k  0.01515 0.01515 0.1019 0.01515 0.2317 0.01515 0.1819 0.01515 

 

Estimate of the mean number of disease trees per plot will be obtained using (4) as follows. 
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Figure A. Initial Sample of size 8 bold plots. 

The variance is calculated with sample equivalent of (7) given by 
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The joint probability of a network with 0ky  and any other network need not be computed because the result of zero 

divided by a number other than zero is zero. The computed joint probabilities from (8) are given in Table 2. 
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Figure B. Networks for the Initial Sample 

 

Table 2. Computed Joint Probability 

Joint Prob. 
23  25  27  35  37  57  

Value 0.00135 0.00315 0.00245 0.0211 0.0165 0.0379 

 

Hence, the variance of the estimated mean is 

 7247.1109913701.938968864.831188647.4290
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1
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5.0 Element Sampling 
Roesch [3] applied ACS in forest inventories to estimate the average percent defoliation per tree. Smith et al [2] 

evaluated the use of adaptive cluster sampling for three species of waterfowl using simulation study based on samples drawn 

from an enumeration of waterfowls in 5000 km
2
 of central Florida. Two quadrant sizes of 25 and 100 km

2
 were used in their 

study. According to the authors, the efficiency of ACS depends on the spatial distribution of the population sampled, 

quadrant size, initial sample size and condition to adapt.  Some of these factors led to improvement of precision of the 

estimate while others did not. Christman and Pontius [4] investigated four bootstrap methods (Sitter’s Mirror-Match, Gross, 

Rao and Wu’s Rescaling and McCarthy and Snowden’s Bootstrap with replacement) methods in setting up confidence 

interval.  Overall, the study shows that the best methods depend on the type of population under study and the sample size. 

Using waterfowl data from Smith et al [2], Christman and Pontius [4] recommended the use of McCarthy and Snowden’s 

method with percentile intervals when the modified Hansen-Hurwitz estimator is used. Dryver and Thompson [5] proposed 

two improved unbiased estimators of ACS conditional on sufficient statistic which is not minimal sufficient. These estimators 

make use of the edge units. Using Rao-Blackwell theorem the authors showed that the estimators are unbiased. Ojiambo and 

Scherm [6] investigated the efficiency of ACS in estimating the mean plant disease incidence. Using simulated data they 

demonstrated that ACS was most precise than simple random sampling for low level of disease incidence especially when 

diseased plants were highly aggregated and when the most liberal condition to adapt (CA =1 plant) was used.   They also 

indicated that for ACS to be efficient, the final sample size should not be excessively larger than the initial sample size.  

Arabkhedri et al [7] applied ACS to the estimation of total suspended sediment load. The result of their study suggests that 

ACS can produce accurate estimate. Coggins et al [8] used ACS to improve the estimate of low level mountain pine beetle 

damage on trees using samples of airborne imagery. 

 

6.0 ACS in Cluster Sampling 
Thompson [9] considered the ACS design where the initial sample of n primary units is selected by simple random 

sampling without replacement with subsequent inclusions to the samples at the secondary unit level. Two estimators of the 

population mean were suggested.  One is 
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k denote the probability that one or more of the primary units that intersect network k is included in the initial sample; 

and is computed from the sample. 

0kj  is the probability that one or more of the primary units that intersect both networks k and j are included in the 

initial sample. 

Salehi and Seber [10] developed the idea of a two-stage ACS. They used two designs – one where clusters are permitted 

to grow across primary sampling unit boundaries (overlapping scheme); second where clusters are truncated at the boundaries 

(non-overlapping scheme). According to authors the non-overlapping scheme appears to be more efficient. 

 

7.0 Use of Auxiliary Information 

Roesch [11] was first to combine the probability proportional to size sampling scheme with adaptive sampling scheme in 

forest survey of trees. An initial sample of trees was selected with probability proportional to basal area of the tree bole.  If an 

initial sample tree  j  has pollution damage (i.e., 1iy ) then tree j’s centre is used as the centre of circle with radius r.  The 

value of y is observed for all trees within this circle which have not already been selected for the sample from this point. If for 

any of these trees 1iy , then we carry out the same procedure as for the first set of trees with 1iy . Otherwise adaptive is 

stopped when we encounter tree with 0iy  i.e. no pollution damage.  Pontius [12] applied ACS to a case where the 

primary sampling units were selected with probability proportional to the sizes of the primary units. In each selected primary 

unit, every secondary unit is inspected for rare event; if condition is satisfied it is adaptively added. Thompson [13] used 

stratified random sampling scheme to select initial sample of units and adaptive procedure is then used to select additional 

units once a set condition is satisfied. He showed with illustrative small data set that stratified adaptive cluster sampling is 

more efficient than the conventional stratified random sampling for estimating rare and clustered population. Finally Felix-

Medina and Thompson [14] proposed adaptive cluster double sampling and used regression estimator to obtain the estimate 

of the population mean. 

 

8.0 Conclusion 
From the researches carried so far it is clear that ACS was developed largely for ecological studies. It has been applied to 

survey on birds, amphibians, marine and aquatic species as well as tree species and tree diseases.  Most of the work done so 

far on ACS is based on one item study.  In a multi-subject survey where the survey design is generally based on the important 

species, species of secondary interest are estimated poorly. ACS involves extra cost in adding additional units in the 

neighbourhood that meets the condition, as a result adaptive strategy should be reserved for important characteristics that are 

known to be rare and found in clumps. While the conventional sampling based on the initial sample should be applied to 

common and abundant species in other to save cost. One setback in the use of ACS is that it may not be reliable for invasive 

species where the method of data collection disturbs the species in the neighbouring units that have the target organisms. 

However, simulation studies on ACS have shown that increase in precision of ACS over simple random sampling 

depends on the spatial distribution of the population, initial sample size, sampling unit size and condition determining when 

to canvass neighbouring units. 

Finally, going by the work done in ACS so far, much study has not been done in the application of ACS in some 

household (human population) surveys, like agricultural surveys, disease prevalence survey in humans and animals; and also 

in the use of auxiliary information.  Presently ACS has not been used in Nigeria by researchers. 
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