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Abstract 
 

We present a novel generalized scheme for optimal bandwidth of higher-order 

multivariate nonsymmetric kernels in kernel density estimation. The conventional way 

of first specifying the dimension and the order of the bandwidth h before obtaining the 

global error is removed. The paper however reveals that the convergence rates for this 

scheme would be faster than those existing in the literature. 
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1.0 Introduction 
Kernel density estimation methods are very widely and increasingly used smoothing methods for statistical analysis and 

its related problems. Basically, it is the construction of an estimate of the true probability density function from the observe 

data. Since its inception in earlier papers [1, 2]; the focus of attention by most authors has been on symmetric kernels [3, 4] 

with little attention on nonsymmetric kernels [5, 6]. However, in Afere and Adaja [7], the higher-order version of the 

nonsymmetric kernels was discussed. All these works have been centred on univariate nonsymmetric kernels. In this paper, 

we thus extend this to the multivariate setting. 

    Generally, given N samples 1 2, ,..., NX X X drawn from a population with density ( )f x , the d – dimensional multivariate 

kernel density estimator with the parameterization 
2 . dhH I is given by 

1

1ˆ ( ) ( )
N

i
h d

i

f K
Nh h


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x X
x  (1) 

where 
T

1 2( , ,..., )dx x xx and 
T

1 2( , ,..., )i i i idX X XX , 1,2,...,i n ; h is the bandwidth and K is the d – variate 

kernel function which satisfies ( ) 1dR
K d x x [8]. Conventionally, K is supposed to be symmetric; that is ( ) ( )K K t t . 

This assumption shall be dropped in this paper. In [7], K is considered to be higher-order nonsymmetric kernels. The 

extension of this paper to the multivariate setting shall be the main thrust of this paper.  

    The bandwidth h is the most important characteristics of density estimate [3, 9]. In this case, one computes the bandwidth 

h via the asymptotic mean integrated squared error (AMISE) given by 

 ˆ ˆ ˆAMISE ( ) AISB ( ) AIV ( )h h hf f f x x x  (2) 

where  
2ˆ ˆAISB ( ) ( ( ) ( ))h hf f d f  x x x xE and 

2 2ˆ ˆ ˆAIV ( ) ( ( ) ( ))h h hf f f  x x xE E . On optimizing (2), Silverman [3] 

showed that for any d – dimensional symmetric kernel of order two, (2) can be expressed as 

 
4 2 2 2 11ˆAMISE ( ) { ( )}

4
d

d

h
R

f h f d n h    x x x  (3) 

where 
2

1 ( )dR
t K d   t t and 

2( )dR
K d   t t , and Osemwenkhae [10] extended this to order four and obtained 
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These were extended to the higher-order kernel of order (2m + 2) by Afere [11] and obtained the generalized expression as 
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The simplified extension expressions in (4) and (5) were achieved by the symmetry assumption of K [3, 4, 11, 12]. 

    In this paper, as earlier said; we shall focus attention on nonsymmetric kernels. Thus, the assumption of symmetricity of 

kernel function that has simplified most of the work in literature shall be dropped. Hence, K can take any of the 

nonsymmetric kernel – exponential, Weibull, Gamma, chi-square, e.t.c. that are available in the literature [13]. The aim of 

this work, however, is to extend the earlier work on the higher-order nonsymmetric kernels by Afere and Adaja [7]. This 

shall be done by obtaining the generalized asymptotic optimal bandwidths via the asymptotic mean integrated squared error. 

    The structure of the paper is as follows. In Section 2, we established the fundamental case of order one. The result is 

extended to handle the higher-order case in Section 3. Section 4 is dedicated to the proposed generalized scheme. Its 

methodology and the convergence scheme are also discussed in this section. The discussion of findings is given in Section 5. 

Finally, a conclusion is provided in Section 6. 

 

2.0 The d – dimensional nonsymmetric kernel of order one 
    Here, we shall first consider when the optimal bandwidth h is of order one. Suppose (1) is defined for the following 

nonsymmetric regualarity condtions 
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Assuming also that f  and f  are both continuous and squared integrable as well as lim 0
N

h


 and lim
N

Nh


  . Then, it 

follows from definition (6); that the AMISE of ˆ ( )hf x  in (1) is  

 2 2 2ˆ ˆ ˆ ˆAMISE ( ) ( ( ) ( )) ( ( ) ( ))h h h hf f d f f f d    x x x x x x xE E E  (7) 

On substituting (1) in (7), and by employing the multivariate Taylor series expansion and then applying appropriate 

simplifications by using the conditions in (6), (7) becomes 

 
2 22 1

12 2

ˆAMISE ( ) ( ) d

hf x h f K N h K     (8) 

The minimization of (8) with respect to h, results in 
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Equation (9) is the asymptotic optimal bandwidths for a multivariate nonsymmetric kernel of order one. In the next section, 

we shall extend this to higher-order kernel. 

 

3.0 The higher-order nonsymmetric multivariate kernel 
    We take the order of the optimal bandwidth h to three. Thus, we modify the regualarity conditions in (6) by imposing the 

conditions below on (1) 
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Also, supposing that f  , f  , f   and 
(4)f are both continuous and squared integrable and that lim 0

N
h


 and 

lim
N

Nh


  are satisfied; then on substituting (1) into (7) and taking the multivariate Taylor series expansion up to the fifth 

term; and with the modified regularity conditions in (10), the asymptotic MISE for the d – dimensional nonsymmetric kernel 

of order three is given as 
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6

2 22 3 1

32 22

ˆAMISE ( ) ( )
(3!)

d

h

h
f K f N h K   x  (11) 

If we minimize (11), we have the asymptotic optimal bandwidths h of the multivariate nonsymmetric kernel of order three to 

be 
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  

       (12) 

The nomenclature 
3,nonsymh is used for the optimal bandwidth of the multivariate higher-order nonsymmetric kernel of order 

three. Equation (12) is thus the fundamental equation for the optimal bandwidth of any higher-order nonsymmetric 

multivariate kernel of order three. In the next section, we shall give the proposed generalized scheme for any d - dimensional 

higher-order multivariate nonsymmetric kernels. 

 

4.0 The proposed generalized optimal bandwidth scheme 
    Now, supposing we impose the regularity conditions (13) in (1) by modifying (10), we have 
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Now, on substituting (1) in (7) and taking the multivariate Taylor series expansion of the resultant equation up to the term 

(2m + 1) and using condition (i) in (13), (7) becomes 
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On simplifying (14) and imposing condition (ii) in (13), we have that ˆAMISE ( )hf x  in (14) reduces to 
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On differentiating (15), we have 
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Therefore, 
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Equation (16) is thus the required expression for the generalized asymptotic optimal bandwidth corresponding to the 

regularity conditions in (13) for any higher-order multivariate nonsymmetric kernels. 

 

5.0 Findings and discussion 
     On comparing (12) with (16), we found out that the convergence rates of the asymptotic optimal bandwidth for any 

higher-order multivariate nonsymmetric kernels has increased from 

1

6dN


  to 

1

4 2d mN


 

1,2,..., ; 1,2,...,d m     . This convergence rate is made possible with the aid of the regularity conditions in 

(13). The proposed scheme however has not only given us the generalized optimal bandwidth but also enhances the rates of 

convergence of the global error for any higher-order multivariate nonsymmetric kernels. 

 

6.0 Concluding remarks 
    In this paper, we have been able to give the generalized form of the optimal bandwidth for the d-dimensional higher-order 

multivariate nonsymmetric kernels. This will surely give helping hands to the researchers in this area of mathematical 

statistics since it has completely removed the problem of first specifying the order of h and its dimension (d) before obtaining 

the optimal bandwidth when calculating the global error of any higher-order multivariate nonsymmetric kernels. 
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