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Abstract 

 
 

This research focuses on the empirical illustration of the proposed modified kernel 

nearest neighbourhood estimate (MKNNE) bandwidth approach in estimating 

density. This proposed approach is used to estimate the Ambrose Alli University GST 

102 Mathematics students’ results. The quality of the adaptive density estimates 

obtained showed some improvements over some existing schemes. This is visible in 

the reduced error rates and better rate of convergence. 
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1.0 Introduction 
 

Kernel density estimation provides a nonparametric estimate of the probability function from which a set of data is drawn. As 

these densities are usually unknown, unrealistic assumptions are frequently made, thus compromising the performance of the 

algorithm in question [1]. If a particular form of the density is assumed known, then a parametric estimation is used. If 

nothing is assumed about the density shape, nonparametric estimation is employed. One of the most well-known and popular 

techniques of nonparametric density estimation is the kernel or parzen density estimation [2]. 

Given a sample nXXX ,...,, 21  drawn from population with density function f(x), the univarite kernel density estimator 

evaluated at x is given by; 
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where k(.) is a kernel function and h is the bandwidth or the smoothing parameter. 

Earlier work on the kernel method emphasized asymptotic results, whereas determining an optimal h is the main research 

focus today. A number of other works considering the problem of kernel size selection exist [3 – 5]. It has been shown by 

many researchers [1, 5 – 8] that estimates based on variable-sized kernel and optimal constant- sized kernel are widely used. 

However, the performance of the kernel methods depends largely on the smoothing parameter (bandwidth) and very little on 

the kernel [4, 9, 10]. 

Recently, a wide variety of sophistication of the basic kernel estimator has been proposed, all pointing to the importance of 

adaptive kernel estimator [5, 11]. The “adaptive” nature of the density estimate arises from the varying bandwidth used in the 

estimation process. If h, the bandwidth in (1.1) above, is “fixed” during estimation, we have the fixed kernel density 

estimation approach, but when it is allowed to vary all though the process of the estimation, we have the adaptive kernel 

method. A number of works considering the problem of kernel size selection exist [1, 3, 4, 6, 12–15]. The motivation for this 
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work arose from the work of Bhattachdrya and Gangopadhya [14] on the kernel with nearest neighbour estimates (KNNE) 

approach. 

Some great pitfalls of the nearest neighbour estimate density approach is that estimates tends to oversmooth data density. 

Also, it is not a bonafide probability estimates. It has some points of discontinuities. It does not integrate to one. An 

improvement on it came from the work of Bhattachdrya and Gangopadhya [14]. In their work, the kernel nearest 

neighbourhood density estimates, a kernel function (which is a probability density function) when added to nearest 

neighbourhood density estimates improve smoothing of the density of the data. The degree of smoothing is controlled by the 

distance between two points on the line to be 1 ii xx  in which )(.....)()( 21 xdxdxd n  are the distances 

arranged in ascending order, from x to the points of sample. This result is consistent with the intuitive idea of kernel estimator 

having to find a compromise between estimating two distinct values of f on either side of discontinuity. The bandwidths 

obtained are substituted into equation (1.1) above to obtain density estimate. This approach is a bonafide probability 

estimates as the estimator integrates to one, but there still some points of discontinuities in the density curve.  

Clearly, in practice, one does not have access to the true density function f(x) which is proposed to be estimated. Thus, a 

number of approaches can be taken for finding the bandwidth that will lead to better density estimation via varying the 

bandwidths [4, 5, 6, 15-17]. To this end, we modified the kernel nearest neighbour estimate method and term it the modified 

kernel nearest neighbour estimate (MKNNE) approach in estimating densities. The quality of the density estimates are 

assessed by comparing it to the density, obtained under the mean-square error criterion. The error generated using these 

approach would be considered. 

In this work, we present a novel data-driven method that require the knowledge of pilot plot from optimal fixed window size 

and the variance of the estimate. This invariably reduces the amount of error at arriving at the “true density”. This is an 

adaptive kernel approach which adapts to the sparseness of the data by using a broader bandwidths over observations located 

in region of low densities. This is done by varying the bandwidth inversely with the density. An initial (fixed bandwidth) 

density estimate is computed to get an idea of the density at each of the data points, and this pilot estimate is used to adapt the 

size of the bandwidth over the data points when computing a new kernel density estimate.  

 

2.0 The Modified Kernel Nearest Neighbour Estimate (MKNNE) Approach  

 
This method of adaptive kernel size selection proposed in this work is based on the kernel nearest neighbour 

estimate (KNNE). It is a modification of kernel nearest neighbour density estimate by adjusting the amount of bandwidths to 

the density of the data. The degree of smoothing is controlled by the distance between two points on the line to be 1 ii xx  

in which    )(.....)()( 21 xdxdxd n  are the distances arranged in ascending order, from x to the points of sample. To 

correct the problem of discontinuities in some points in the kernel nearest neighbour density estimate, we have to identify the 

discontinuous points in the estimation using the kernel nearest neighbour approach as a pilot guide. We use the ideal of 

density at the boundaries. In this case, we supposed that f  is a density such that 0)( xf for x < 0  and )(xf > 0 for 

0x . We further supposed that f   is continuous away from 0x . Then, we have  
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where 0≤ <1. See, Wand and Jones (1995). Then at the boundary we obtain      
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                                                            (2.1)                                                  

This result is consistent with the intuitive idea of kernel estimator having to find a compromise between estimating two 

distinct values of f on either side of discontinuity.  We proposed that the inter-quartile range of the boundary values will be 

used. Since the location of the boundary of );( hxf


 is usually known, we adopted this to achieve better performance in its 

vicinity. The window sizes obtained are substituted into equation (1.1) to obtain the corresponding density estimates. The 

MKNNE procedure can be implemented with the aid of the following Algorithm. 
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Algorithm :  The algorithm of the proposed modified kernel nearest neighbour approach  

Step 1  Define y = knn (x,n,t) 

)(, scalartfromneighbournearestntheoutputsamplesrandomornobservatioindividualasx th
 

Step 2   Sortx= Sx and individual data =ind  

Step 3  lx = length (x); 

Step 4  [sx,ind] = sort (x);   

Step 5    sort x 

Step 6  if (t < min (x));then y = sx (n) 

Step 7  if (t > max (x));then y = sx (lx-n+1) 

Step 8  for j = 1:n-1, ntfromnnndo th )1(1  

Step 9  1nndo =lnn and 1nndo = Rnn 

Step 10              while  y = sx (lnn, rnn) 0 , continue 

Step 11 if abs (sx (lnn-1) - t) < abs (sx (rnn+1) -t) continue 

Step 12 else  2)1(1  nt  

Step 13          if abs (sx (lnn-1) - t)-abs (sx (rnn+1) - t) <0; )(td k  

Step 14         else 
2

)(
)(

td
tddo k

k   

Step 15           continue 

Step16    

Step 17              write )(td k  

Step 18              end while nj  . 

 

3.0 Statistical Properties of the Proposed Modified Kernel Nearest Neighbour Estimates

 Approach 
1. The estimates of the smoothing parameters are smaller in modified kernel nearest neighbour approach scheme when 

compared to the kernel nearest neighbour approach. This will contributes significantly to the density estimate by showing 

more hidden features of the density. 

2. The choice of the smoothing parameters follows the procedure at the points of discontinuities      

2
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td
td k

Optk   and   
       1k opt k opt

d t d t


  in steps 14 and 16 of the proposed algorithm above. This enables the 

bandwidth to be controlled such that no new bandwidth would be larger than the preceding bandwidths. This ensures that the 

scheme is adaptive, since the tails of any distribution are usually sparse.  

3 The modified kernel nearest neighbour approach scheme reduces the problem that could result at the boundaries, 

particularly when the data are not evenly distributed. 
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4.0 Application  
We obtained bandwidths and density estimates using a program in Mathematica 6.0 (see Appendix 2). These are given in 

Table1 and Table 2. 

In Table 1, the optimal fixed bandwidth size of  h=5 was found for AAU GST 102 data for every x. The results presented 

in Table 1 are the bandwidths (smoothing parameters). As expected, (see Appendix I) the bandwidths are larger in regions 

with few data (see Table 1) compared to the regions with more data, where the bandwidths become smaller in the propose 

method. This has shown that the propose MKNNE method is sensitive to the data distribution.     

The density estimates from the kernel nearest neighbour bandwidths and the modified kernel nearest neighbour 

bandwidths approaches in Table 1 substituted into (1.1) are presented in Table 2 for AAU GST 102 data.  The kernel nearest 

neighbour estimates approach have lower densities at both ends of the estimates, compared to using the modified kernel 

nearest neighbour estimates. This leads to heavy tails distributions (which can affects type I and type II errors). A look at the 

graphical displays of these densities in Figure 1 revealed this. 

 

 

Table 1:  Estimated bandwidths of AAU Students’ GST 102 examination result data using kernel nearest neighbour 

estimates (KNNE) and the Modified Kernel Nearest Neighbour Estimate (MKNNE)  with the optimal fixed kernel method 

approach h=5. 

 
Data points Bandwidths approach 

 X 

optimal 

fixed 

h=5 kNNE MkNNE 

0 5 5 5 

5 5 5 5 

10 5 5 4.8 

15 5 5 4.62 

20 5 4.93 3.91 

25 5 4.16 3.98 

30 5 3.93 3.93 

35 5 3.05 2.5 

40 5 2.21 1.25 

45 5 3.7 2.5 

50 5 3.9 2.97 

55 5 4.79 4.48 

60 5 4.1 4.34 

65 5 4.27 2.5 

70 5 4.34 3.96 

75 5 5 4.14 

80 5 5 4.78 

85 5 5 4.93 

90 5 5 5 

95 5 5 5 

100 5 5 5 

Mean  4.4319 

  

4.0428 

Var  1.91 1.8803 
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Table 2: Density estimates Values for AAU Students’ GST 102 examination result data using the kernel nearest neighbour 

estimates (KNNE) bandwidths and the Modified Kernel Nearest Neighbour Estimate (MKNNE) bandwidths with the optimal 

fixed kernel method approach h=5. 

 

Data 

point                       Density estimates approach 

X 

optimal 

fixed 

h=5 MkNNE kNNE 

0 0 0 0 

5 0 0 0 

10 0 0.006 0.003 

15 0 0.013 0.007 

20 0 0.019 0.01 

25 0.008 0.028 0.015 

30 0.0017 0.057 0.048 

35 0.0446 0.064 0.064 

40 0.1429 0.144 0.144 

45 0.125 0.19 0.17 

50 0.1964 0.231 0.22 

55 0.125 0.192 0.181 

60 0.1607 0.1622 0.1598 

65 0.0893 0.0893 0.0748 

70 0.0446 0.0611 0.0487 

75 0.0357 0.0391 0.0321 

80 0.0008 0.0098 0.0087 

85 0 0.0008 0.003 

90 0 0 0 

95 0 0 0 

100 0 0 0 

 

 

 

Figure 1: Density estimates of AAU GST 102 data  using KNNE and MKNNE methods estimates with fixed h=5 

approach. 
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In practise, the smaller the variance of the estimate, the better will its contribution to the overall density estimation, as we 

do not know the true density )(xf  [4 – 6].  We have reduced variance in our new approach. 

According to various authors [1, 5, 6, 17 – 19] one way of evaluating the method of adaptive bandwidths selection is to 

compare it to the optimal fixed bandwidth (this is a pilot plot). Our new approach behaved in quite a similar manner. The 

other approach is to aim at reduced asymptotic mean integrated squared error (AMISE) rate in the bandwidth selection 

method and better (faster) convergence rate. AMISE  shows the difference between the “true density” and the estimated 

density. 

Table 3 is the table of calculated bandwidth selections errors and convergence rates from the AAU GST 102 data. 

 

Table 3:  Table of bandwidth selections scheme errors and convergence rate from the AAU GST 102 data. 
h = bandwidths 

error rate in relation to the optimal bandwidth value. 

 

Approach Relative error h  
AMISE  Convergence rate 

KNNE 0.7726 0.7879 210659.1   0.0226 

MKNNE 0.63352 0.7577 210630.1   0.0503 

          

The simulated bandwidth selection scheme errors and convergence rates from the AAU GST 102 data and eruption data, via 

the two methods favour the use of the MKNNE approach over the KNNE. This is because MKNNE bandwidth selections 

scheme errors are smaller and it have higher convergence rate. These can be seen in Table 3. 

 

4.0 Advantages of the Method Proposed 

 
1.      The MKNNE method has lower variance in its estimates. It has relative lower errors in the bandwidth selection and 

better convergence rate than it original version. 

2. It should be mentioned that the optimal constant bandwidth density estimate, to which we were comparing our 

method, can never be achieved in practice as the true density is unknown. At the same time, the proposed method, making no 

assumptions about the underlying density results is comparatively better. It is sensitive to the data distribution. 

3. We have seen from estimated density, that the proposed method can perform comparatively with any constant 

bandwidth method. The fixed bandwidth methods do undersmooth or oversmooth, but the adaptive approaches are more data 

sensitive. 

4.     The MKNNE approaches produce smaller  but optimal smoothing parameters. The estimates of the smoothing 

parameters ih  are smaller in MKNNE than in KNNE. These contribute significantly to the density estimate by showing more 

hidden features of the density. Like the behaviour and attributes of the data. This includes whether the data is symmetric, 

skew symmetric, normal, bi-modal, population distribution etc. 

 

5.0 Conclusion  
 We have proposed a method for varying bandwidths in kernel density estimation. This method is based on the data 

and a pilot estimate. The MKNNE approach modifies KNNE procedure. The kernel nearest neighbour approach uses the 

kernel function on the nearest neighbour method. When we compare our new method with the other approaches’ distributions 

in kernel density estimation, their behaviour has some little differences. The fixed approach is the pilot estimates. It is not by 

any means the best estimate. As expected, the bandwidths are larger in region with few data compared to the region with 

more data, where the bandwidths become smaller in the new method. The MKNNE approach has a lower AMISE and a faster 

rate of convergence than it original version. This has shown that the proposed method is more sensitive to the data 

distribution. This performs significantly better than any constant- bandwidth method. 

 

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 185 – 194      

A Modified Kernel Nearest Neighbour Estimate...   Ogbeide
 
 and Osemwenkhae     J of NAMP 

 



191 

 

 
APPENDIX 1 

Table 4 Source: School of General Studies (2008/2009): General Studies results for Department of Mathematics Students (GST 102). 

Ambrose Alli University, Ekpoma, Nigeria. 

Data of  112 GST 102 examination in Ambrose Alli University, Ekpoma, Nigeria 

          

40 35 42 46 55 54 49 58 68 46 

50 58 57 47 48 43 49 45 70 78 

50 50 43 65 54 67 43 67 49 26 

76 57 42 51 53 42 65 64 48 68 

32 41 49 55 45 50 58 52 53 52 

58 44 53 49 50 37 60 40 40 48 

51 48 42 60 40 48 60 65 64 36 

63 59 67 55 56 49 59 77 58 60 

74 43 43 47 69 53 70 54 35 40 

46 48 49 51 41 51 58 57 45 47 

61 42 40 48 53 40 48 53 35 51 

60 40         

 

APPENDIX  2 

function y = knn (x,k,t) 

 

% SYNTAX: function y = knn (x,k,t) 

% This function takes as input a vector of random samples x 

% and outputs the k-th nearest neighbor from point t (scalar) 

% parameter k is for the k-th NN 

lx = length (x); 

[sx,ind] = sort (x);        % sort x 

 

if (t < min (x)) 

   y = sx (k); 

   return; 

end 

if (t > max (x)) 

   y = sx (lx-k+1); 

   return; 

end 

nnind = find (sx == x (interp1 (sx,ind,t,' nearest'))); % index 

of 1 st NN (in x) 

 

if k == 1           % if we 

want only 1 st NN 

   y = sx (nnind); 

   return; 

end 

 

lnn = nnind;          % set 

left NN pointer 
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rnn = nnind;          % and 

right NN pointer 

 

for j = 1:k-1,          % find 

the k-th NN 

   if (lnn == 1) 

      rnn = rnn + 1;        % move 

right pointer right 

      y = sx (rnn); 

   elseif (rnn == lx) 

      lnn = lnn - 1;        % move 

left pointer left 

      y = sx (lnn); 

   else 

      if abs (sx (lnn-1) - t) < abs (sx (rnn+1) - t) 

         lnn = lnn - 1;        % move 

left pointer left 

         y = sx (lnn); 

      else 

         rnn = rnn + 1;        % move 

right pointer right 

         y = sx (rnn); 

      end 

   end 

end function y = knn (x,k,t) 

 

% SYNTAX: function y = knn (x,k,t) 

% This function takes as input a vector of random samples x 

% and outputs the k-th nearest neighbor from point t (scalar) 

% parameter k is for the k-th NN 

 

lx = length (x); 

[sx,ind] = sort (x);        % sort x 

 

if (t < min (x)) 

   y = sx (k); 

   return; 

end 

 

if (t > max (x)) 

   y = sx (lx-k+1); 

   return; 

end 

    

nnind = find (sx == x (interp1 (sx,ind,t,' nearest'))); % index  
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of 1 st NN (in x) 
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if k == 1           % if we 

want only 1 st NN 

   y = sx (nnind); 

   return; 

end 

 

lnn = nnind;          % set 

left NN pointer 

rnn = nnind;          % and 

right NN pointer 

 

for j = 1:k-1,          % find 

the k-th NN 

   if (lnn == 1) 

      rnn = rnn + 1;        % move 

right pointer right 

      y = sx (rnn); 

   elseif (rnn == lx) 

      lnn = lnn - 1;        % move 

left pointer left 

      y = sx (lnn); 

   else 

      if abs (sx (lnn-1) - t) < abs (sx (rnn+1) - t) 

         lnn = lnn - 1;        % move 

left pointer left 

         y = sx (lnn); 

      else 

         rnn = rnn + 1;        % move 

right pointer right 

         y = sx (rnn); 

      end 

   end 

end. 
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