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Abstract 

 
 

In an attempt to ensure that the probability of a Type I error is exactly α, the p-

value obtained through the permutation approach turns out to be the most reliable 

especially when complete enumeration is feasible for small sample sizes. The 

problem with the permutation approach has been high computationally demanding 

in terms of space and time complexities especially for fairly large sample sizes when 

complete enumeration is not feasible. The bootstrap approach is adopted as a viable 

alternative to the permutation approach especially when the numbers of 

observations are fairly large for a two - sample testing problem. Illustrative 

implementations are achieved and leads to the computation of accurate p-values.  
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1.0 Introduction 
 

One of the fundamental goals in statistics is making inferences about the population mean, μ.  Data are collected by 

sampling from the population in order to draw inference about the population based on the information contained in the 

sample. Theoretical approaches are known to be inaccurate when the underlying assumptions are violated, the usual case in 

practice. This leads to the adoption of the bootstrap and permutation approaches which is a statistical tool that based its 

inference upon repeated sampling within the same sample without considering the assumption of normality [1- 6]. Fisher, the 

founder of classical statistical testing developed the permutation test, as noted in [7-10]. The greatest virtue of permutation 

testing is its accuracy [11]. These tests are computationally intensive [12, 8]. Permutation test is a test procedure in which 

data are randomly re-assigned without replacement so that the statistic of interest is calculated [13]. 

Odiase and Ogbonmwan [9] made it possible to obtain unconditional exact permutation distribution by ensuring that a 

complete enumeration of all the distinct permutations of any two sample experiment is achieved, especially when sample 

sizes are small. However, it is computationally demanding to generate all possible distinct rearrangements in term of space 

and time complexities even with the latest and vary fast processor speed of available personal computers when the volumes 

of figures involved are so large. For instance, if m = 20 and n = 20, there are                 permutations. As a result of 

these difficulties, numerous alternative methods have been proposed, and one of such is the bootstrap method. This work 

shall adopt the bootstrap approach because it is computationally less demanding in term of space and time complexities to 

generate large bootstrap samples. 

The Bootstrap was found to be a powerful tool for statistical inference that substitutes’s raw computing power for 

theoretical analysis [14, 15]. Hesterberg [16] and Teknomo [17] illustrated the one sample bootstrap re-sampling. Berger [13] 

used the bootstrap methods as sampling with replacement to establish confidence intervals. Demiralp et al [18] used the 

bootstrap regression for assessing the confidence in the result of a search for causal dependencies. Chatterjee and Qiu [19] 

estimate the bootstrap control limits for a statistical process control when both the in-control and out-of-control distributions 

of the process are unknown. Sen et al [20] provide a set of sufficient conditions for the consistency of any bootstrap method 

by bootstrapping from a smoothed version. In this study, consideration is given to the bootstrap distribution of two sets of 

observation. A practical issue, however, is whether a  
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permutation method provides better control over the Type I error probability, versus a bootstrap method, when complete 

enumeration is feasible for small to moderate sample sizes. In section 2, bootstrap algorithms developed for two sample 

experiment to generate bootstrap samples shall be discussed. 

 

2.0 The bootstrap algorithms for two sample experiment  
Suppose a two sample experiment is drawn from the same population distribution. If the first set denotes                and 
the second set denotes         , and observed that            , a pool of the observations into a single sample yield: 

                                 (1) 

The number of bootstrap samples with replacement from the original sample (1) is: 
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Note that the actual process involved in obtaining (2) is that, randomly assign them to an ordered     
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that an   
  can also be assigned the value of    in the original sample, and vice versa.  

To obtain  ̂   ̅   ̅ , separate (2) into two parts according to the size of         from the original sample,  so that (3) 

becomes   

       
    

    
    

    
             

    
    

     (3) 

Calculate the group means and the mean difference as follows: 
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Repeat process (2) to (6) B times to obtain bootstrap configurations. To obtain the bootstrap p-value        for mean 

difference of left-tailed test, count the number of mean difference   ̂   from the bootstrap data that is less than or equal to the 

mean difference   ̂  of the original data and then divide by the number of bootstraps sample performed, and vice versa for a 

right-tailed test. 

 i.e.        
 

 
 { ̂   ̂}       

 

 
 { ̂   ̂}     (7)  

 

On the other hand, five steps considered by Good [8] were followed by Odiase and Ogbonmwan [9] to generate a complete 

enumeration of all the distinct permutations of the experiment required. When this is achieved, the statistic of interest is 

computed for each of the permutation. The test statistic in this case is the mean difference and is denoted by: 

  ̂     ̅   ̅         (8) 

and can be expressed as: 
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The distribution that put probability  (
    

     
)⁄  on each one of these statistic is called the permutation distribution of  ̂   . To 

obtain the permutation p-value(     ), calculate the fraction of times where the observed mean difference exceeds the mean 

difference in the permutations.   

  (     )  
 
  

     

 { ̂     ̂}       (10)  

In what follows in section 3 is the presentation of data and results from practical applications of both the bootstrap and 

permutation approaches.  

 

3.0 Presentation of Data 
Appendix 1 represent the daily pocket money (in naira) collected randomly by 10 students from Mathematics and 12 

students from Statistics in the Department of Mathematics, Ambrose Alli University, Ekpoma Edo State, Nigeria. If the 

population variances of the student’s daily pocket money are the same for the two options, test the hypothesis that the 

difference between the average daily pocket money received by the entire students in the Department is N50, for α = 0.05 

level of significance.  Appendix II denotes the data from Freund [21], page 592, exercise 16.30. An examination designed to 

measure basic knowledge of American history was given to random samples of freshmen at two major universities, and their 

grades. Test at the 0.05 level of significance the null hypothesis that there is no difference in the average knowledge of 

American history between freshmen entering the two universities.  

 

3.1 Results from the Bootstrap Approach 
The bootstrap algorithms developed in section 2 was translated to Visual Basic code to obtain the bootstrap mean difference 

generated as presented in Table 1. The bootstrap sample generated was replicated 3000 times (B = 3000). The observed mean 

difference from the original data is calculated as 22.75, its probability value is 0.084 and Figure 1 displayed the bootstrap 

distribution.  
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Table 1: Bootstrap Mean Difference 

 

 

 

 

 

 

  

Figure 1: Bootstrap Distribution of Mean Difference 

 

3.2 Results from the Permutation Approach 
This approach is based on the assumption that all observations are exchangeable [8 – 9]. For the data on student’s daily 

pocket money, the number of distinct permutation is 
     

       
        . The observed mean difference from the original data 

is calculated as 22.75, its probability value is 0.097851 and Figure 2 displayed the permutation distribution. 

 

Table 2: Permutation Mean Difference 

Mean Difference Probability Frequency 

-57 1.55E-06 1 

-56.0833 1.55E-06 1 

-55.1667 3.09E-06 2 

. . . 

. . . 

. . . 

22.75 9.17E-03 5930 

23.66667 8.61E-03 5570 

24.58333 8.01E-03 5182 

. . . 

. . . 

. . . 

57.58333 7.73E-06 5 

58.5 4.64E-06 3 

59.41667 3.09E-06 2 
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-51.4592 0.000333 1 

 

-40.8593 0.002667 8 

 

-30.2594 0.025 75 

 

-19.6595 0.084667 254 

 
-9.05966 0.170333 511 

 
1.540226 0.266 798 

 
12.14011 0.222333 667 

 
22.74 0.144667 434 

 
33.33989 0.062333 187 

 
43.93977 0.017667 53 

 
54.53966 0.004 12 

  
Sum Freq 3000 
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Figure 2: Permutation Distribution of Mean Difference. 

 

3.3 Results showing the advantages of Bootstrap over the permutation Approach  
The second data set demonstrate the advantages of bootstrap method over the permutation method in terms of time and 

space complexities. The observed mean difference from the original data is calculated as 12.25, its probability value is 

0.00533 and Figure 3 displayed the bootstrap distribution.  

 

Table 3: Bootstrap Mean Difference on second data 

 

Mean Difference Probability Frequency 

 
-19.351 0 0 

 
-16.1919 0.000667 2 

 
-13.0328 0.004333 13 

 
-9.8737 0.020333 61 

 
-6.7146 0.069 207 

 
-3.5555 0.147 441 

 
-0.3964 0.253 759 

 
2.7627 0.239333 718 

 
5.9218 0.153333 460 

 
9.0809 0.083 249 

 
12.24 0.024667 74 

 
15.3591 0.004667 14 

 
18.5182 0.000667 2 

  
Sum Freq 3000 

 

 

   

 

Figure 3: Bootstrap Distribution of Mean Difference 
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3.4 Results from the Permutation Approach  
However, permutation approach for the set of data became impossible because the complete enumeration involved is 

very large, (i.e. m = 20 and n = 20, then 
    

     
 

     

       
                . Nevertheless, discussions of results and their 

various conclusions are presented in sections 4 and 5 respectively.  

 

4.0 Discussion of Results 
A performance study of the two approaches was done using two empirical data sets. Bootstrap samples are generated 

3000 times from the data in appendix I. Analysis carried out for bootstrap mean difference is presented in Tales 1 and the plot 

which exhibited the distribution of a normal curve is shown in Fig. 1. Similarly, Table 2 present the analysis carried out for 

permutation mean difference and the plot which displayed the distribution of a normal curve is shown in Fig. 2. Estimated p-

values from both the bootstrap and permutation mean differences are 0.084 and 0.097851 respectively. These compared with 

α = 0.05 level of significant (0.084 and 0.098 > 0.025) revealed that the null hypothesis (H0) should not be rejected. However, 

results of the data in appendix II presented the advantages of bootstrap method over the permutation method in terms of time 

and space complexities. Analysis carried out for bootstrap mean difference is presented in Tables 3 and the plot which 

exhibited the distribution of a normal curve is shown in Fig. 3. Estimated p-value from the permutation became difficult 

because of the enumeration involved is very large, i.e. 137,846,528,820. Thus, estimated p-value from the bootstrap approach 

when compared with α = 0.05 level of significant (0.004333 < 0.025); revealed that the null hypothesis (H0) must be rejected.  

 

5.0 Conclusion 
In general, a method of computing the bootstrap p-value is given and the resultant p-value ensured that the probability of 

making a Type 1 error is approximately α. With a small sample size, the estimated p-value indicate that the bootstrap method 

is generally approximate to the exact p-value obtain from the permutation method. As the sample size gets larger, situations 

are found where the bootstrap method performs better than the permutation method.  

 
Appendix I: 

Data on daily pocket money (in naira) collected randomly by 10 students in Mathematics and 12 students in Statistics 

Mathematics Students (X): 50, 100, 75, 80, 90, 120, 80, 160, 120, 40 

Statistics Students (Y): 45, 55, 30, 50, 110, 70, 50, 65, 40, 55, 75, 180 

Source: Department of Mathematics, Ambrose Alli University, Ekpoma, Edo State, Nigeria 
 

Appendix II: 

Data on average grade knowledge of American history between freshmen entering the two universities 
University A:  77, 72, 58, 92, 87, 93, 97, 91, 70, 98, 76, 90, 62, 69, 90, 78, 96, 84, 73, 80 

University B:  89, 74, 45, 56, 71, 74, 94, 88, 66, 62, 88, 63, 88, 37, 63, 75, 78, 34, 75, 68 

Source: Freund (1992), page 592, exercise 16.30 
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