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Abstract 
 

 

A major attribute of a Statistical principle especially for the frequentists is 

explored in this work. The basic and fundamental principle of the permutation test 

is briefly reviewed and used to generate likelihood for parameters. The promise of 

getting exact results is inspired by the advent of the computer. The theory and 

methodology of the permutation likelihood generation are described. 
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1.0 Introduction 
 

In its basic form, the likelihood is a function of the parameters of statistical models which plays a key role in statistical 

inference. Thus, for a continuous random variable X, the likelihood function depending on the parameter Θ is expressed as  

)()( xfxL


 
. 

Several approaches have been adopted in generating likelihoods. For example, the bootstrap which was introduced by 

Efron [1-3] is an intensive computer-based Monte Carlo resampling method.  

The bootstrap has been a useful statistical tool for the estimation of sampling distribution of random variables. 

Ogbonmwan and Wynn [4, 5] gave incisive discussions on the bootstrap generated likelihood. The papers sketched the theory 

of likelihood generation. Ogbonmwan [6] used the bootstrap technique to obtain simulated likelihoods for k ≥ 2 contracts of 

parameters. Furthermore, Owen [7, 8] provided related technique for empirical likelihood. Chen [9-11] engaged empirical 

likelihood in alliance with kernel density estimation to construct confidence interval for the value of a probability density at a 

given point. Holmes and Adams [12] incorporated the conventional k~ nearest neighbor algorithm to explore classification 

models. 

Nearly in every paper cited in this text and of course more in the literature, the likelihoods generated are not in many 

cases exact.  For example, the bootstrap configurations (samples) used to generate the bootstrap empirical likelihood is not a 

total permutation of all the elements in the original sample. It eventually turns out that the bootstrap estimates are based on a 

sample from the configurations that would be needed in the permutation approach. This is a limitation of the bootstrap 

approach. However, this limitation of the bootstrap does not rule out its correctness and reliability. It suffices to say that the 

bootstrap provides very good estimates of the permutation approach which actually provides exact results.  

The purpose of this paper is to provide the theoretical framework that will take advantage of the advent of the computer, 

generate all the permutations necessary for the likelihood in a two sample problem. The procedures will be described in 

sections 3 and 4. General remarks and conclusions are made in section 5. Section 2 reviews the permutation approach. 

 

2.0  The Permutation Approach 
The permutation approach has been known to provide exact result in statistical inference ( see Agresti [13] and Good [14]). 

The difficulty of making use of the permutation test has been the difficulty of performing intensive looping in the computer 

programming required for a complete enumeration for unconditional permutation of all elements in a statistical experiment. 

Odiase and Ogbonmwan [15] has sufficiently addressed this difficulty. Several alternatives have been put in place of the 

computationally intensive unconditional exact permutation but none of these alternatives provides accurate results. They all 

provide estimates to the exact permutation method.  

 

 

Corresponding author: 
 
 E-mail: -, Tel. +234 8056752390 

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 175 – 178      

mailto:fwangshaktele@yahoo.co.uk


176 

 

The Permutation Likelihood.   Ogbonmwan  S. M.     J of NAMP 

 
In this article, the special case of a 2 x n tables in a two sample experiment with row and column totals allowed to vary with 

each permutation is considered. A complete enumeration of all the permutations yields maximum power than the alternatives, 

see Opdyke [16]. 

Good [14] initiated a five step approach for the permutation test. In line with the bootstrap resampling method for generating 

likelihood the following steps would be considered. 

 1. For a given set of data, choose a statistic of interest. 

 2. Compute the test statistic for the original data set. 

 3. Do a complete enumeration of all the distinct permutations of the data sets and for  

 every permutation compute the test statistic. 

 4. Construct the distribution for the test statistic using the results of Step 3 

 Step 3 which gives a complete enumeration of all distinct permutations of the experiment is the hub of the generation of the 

permutation likelihood that is considered in this article. Doing a complete permutation of the observations is not without a 

cost. In addition to good computing skill, serious price is paid for time and space complexities. For example, a two sample 

experiment can be considered as follows: 

Let ),( 21 XXX N  , where 21 nnN  , 21321 ,,),,,,(  iXXXXX T
iniiii  , and 

i
n   is the sample size for 

sample i . Assume that 
N
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Odiase and Ogbonmwan [15] developed a systematic algorithm for generating all the distinct permutations for a two sample 

experiments. The paper adopted two approaches viz: the use of the actual observations and by making use of the ranks of the 

observations. 

 

3.0  The Permutation Likelihood 
Consider that the parameter being estimated by a statistic T emanates from a family of transformations of the data set 

),,,,( nXXXXX 321   to Y  such that 

)(),,,( xgyyyY n   21                            (3.1) 

Assume that the transformed data set  nyyy ,,, 21  are independent and identically distributed with a distribution 

function F , not depending on   . Also, assume that niXy ii ,,,, 210  . If the statistic of interest of interest  X on  is 

 defined by )(xtT  ,then define )(  ytT   and take the partial likelihood for   to be the density T   of  at the 

observed value of t  . The permutation likelihood is obtained by considering the values of the total enumeration of all the 

permutations of the statistic )( yT  and then let the values be listed in some order say 
00

3
0
2

0
1 0Ni TTTT ,,,,   which will have 

the empirical cumulative density function (cdf) of the form: 

 tTT
N

tP iiT  00

0

1
#)(                                                                (3.2) 

The empirical cdf in (3.2) is smoothed to obtain a continuous density )(ˆ tfT  by using any of the density estimators. The 

kernel density estimator is the choice in this work. Thus, the permutation likelihood is the density of the value of the 

permutation 
0


T  at t , where )( 

ytT 0  realized from the transformed data set ),,,( nyyy 21 . An alternative 

and simplified version that gives the exact empirical likelihood is to do a count of the proportion of 
0
jT  values that lie in 

some interval around j .Thus, for some 0  the exact empirical permutation likelihood is defined as 

   tTtT
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L jj
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#)(                                          (3.3) 
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3.1 The Two Sample Case 
Consider a two sample experiment in which every individual belongs to one and only one of two distinct samples with means 

1   and   2  (say). Suppose interest lies in the estimation or test of hypothesis about the means. In particular, consider two 

samples drawn from two distributions whose means differ only by a shift parameter. If we let mXXXX ,,,, 321   and 

nZZZZ ,,,, 321   be two samples, then the parameter can be estimated by the difference in means, ZX  . Interest 

will be to generate the likelihood for the parameter  . If NiZX iim ,,,, 21  and nmN  , then the 

transformed data set would be 

   nm ZZZZXXXXy ,,,,,,,,, 321321    (3.4) 

Observe that (3.4) is simply     Nmmm XXXXXXXy ,,,,,,,, 21321   which could be 

expressed as: 
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(3.5) is true since iim ZX  . Thus the estimate 
0


T  can be defined as: 
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And hence the permutation likelihood of   is the density approximation 
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With 
0

i
y


 as ith permutation from ),,,( Nyyy  21  and t  is the observed value of T , i.e.   tt . By adopting 

the kernel density estimator, we have 
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where k(.) is the Guassian kernel and h is the approximate window width (of order 2) Then, the exact permutation likelihood 

is defined as the distribution: 
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for some 0 . 

 

3.2 Higher Order Forms: 
Osemwenhkae [17] obtained the optimal values for any order m of the window width to be 
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Thus, by substituting optmh ,  in place of h  in (3.9) we generate higher order forms of the permutation kernel likelihood of the 

form: 
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where m=2, 2, 6, 8, . . . . 
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4.0  Discussion 
The exact permutation likelihood has been examined in this work. The beauty of the work is that the likelihoods are 

realized unconditionally. In this article, consideration is given to the special case of 2xn tables (i.e. the two sample 

experiments) with row and column totals allowed to vary with each permutation. Large sample approximations are 

commonly adopted in several nonparametric tests as alternatives to the tabulated exact tests. The requirement for such 

alternative approximations to be reliable is that the sample size should be sufficiently large. This requirement is not even 

necessary in the generation of the permutation likelihood since all the permutations are to be generated to produce the 

likelihood. All other alternatives such as the bootstrap likelihood, provide approximate likelihood to the permutation 

likelihood considered in this work. This work has sufficiently provided all the theoretical background needed for the 

generation of empirical permutation likelihood. 
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