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Abstract 
 

The Ising model is a simple model that can be solved exactly on the Bethe lattice. In 

this work, a review is undertaken highlighting the very important fact that the Ising 

model on the Bethe lattice is equivalent to an approximate treatment of the Ising model 

on crystalline lattices and site percolation in the Bethe Lattice.  It is observed that the 

results for the Bethe lattice are typically below the crystalline results by 5-15%. 

However, the Bethe lattice results have the correct trend of decrease as the branching 

ratio increases. 
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1.0 Introduction 
 

The study of exactly solved models has elicited some general interest in statistical mechanics. The statistical model on 

the Bethe lattice of general connectivity, with hopping interactions between nearest neighbor (NN) and next nearest 

neighbor(NNN) spin is one of the models that has received widespread attention by many authors recently [1-6]. The Bethe 

lattice is an infinite graph where any two parts are connected by a single path and each vertex has the same number of 

branches z. Each site has z neighbors, but there is only one way to get from one site to another. Following the mean field 

theory of magnetism in which an effective field is placed on a single site, the Bethe-Peierls approximation was introduced to 

describe crystalline alloys or Ising models. It was pointed out later [7] that this approximation becomes exact on the Bethe 

lattice.  A Bethe lattice, which is an infinitely Cayley tree (a finite portion of the Bethe lattice) is a connected graph without 

circuits and historically gets its name from the fact that its partition function is exactly that of an Ising model on the Bethe 

approximation. The Cayley tree has a peculiar thermodynamic limit due to its large surface whereas the infinite Bethe lattice 

has no surface, all its lattice sites being located inside the infinite tree.  In the Bethe lattice, one is concerned with properties 

that are unaffected by the surface although this cannot be avoided in all cases. Hence, the study of the different models on the 

Bethe lattice is numerically feasible [8]. The precise difference between Cayley tree and Bethe lattice is given by Baxter [9]. 

The Bethe lattice or the infinite Cayley tree presents a hierarchical structure that greatly simplifies some problems of 

statistical physics. It has therefore been widely used to obtain analytical results for problems that are otherwise intractable on 

Euclidean lattices. The physical relevance of these results is that the Bethe lattice is supposed to represent some mean field 

limit of Euclidean lattices of very large dimensions [10]. 

The Bethe lattice is a pseudo-lattice because it does not possess the usual point symmetries and translational symmetries 

of crystal Bravais lattice [11]. Nevertheless, it plays an important role in statistical and condensed matter physics because 

some problems involving disorder and/or interactions can be solved exactly when defined on a Bethe lattice due to its 

recursive structure e.g. Ising models, percolation or Anderson localization. Such exact solution on the Bethe lattice for z <  

sometimes, but not always, have mean field character. In any statistical mechanical system each component interacts with the 

external field and with the neighboring components. In the mean-field model, the second effect is replaced by an average 

over all components. Furthermore, it was argued that mean field theories are more reliable if derived on a Bethe lattice [12]. 

The Bethe lattice continues to be a popular model. The earlier applications included localization, alloys, spin waves and 

spin glasses. Recently it has been used to investigate properties of the Potts model, the Blume-Capel model, the Hubbard 

model and the Anderson model [2, 4]. Bethe lattice may actually serve as a model for the electronics structure of amorphous 

solids [13]; see [14] for more applications. The local Green function for a quantum-mechanical particle with hopping 

between NN and NNN on the Bethe lattice was calculated [11], where the on-site energies may alternate on sub-lattices. For 

infinite connectivity the renormalized perturbation expansion was carried out by counting all non-self intersecting paths, 

leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice, the same 

equation is obtained from a path integral approach for the partition function. 
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There are two special properties that make the Bethe lattice particularly suited for theoretical investigations. First is its 

self similar structure which may lead to recursive solutions. The other is the absence of closed loops which restrict 

interference effect of quantum mechanical particle in the case of NN coupling. The situation is different if also long range 

hopping processes or interactions are allowed say between NNN, where a frustration introduced by the NNN hopping 

typically suppresses anti-ferromagnetism in the half–filled Hubbard model at weak coupling. It was then considered for cases 

where the hopping has both NN and NNN contributions and to the limit z  [12]. In practice, there are two approaches to 

solving the Bethe lattice. One deals with simple Hamiltonians whose interactions are restricted to first or second-nearest 

neighbor atoms in order to carry out the calculations analytically while in the other, more involved Hamiltonians are used and 

consequently the solution can only be obtained numerically [15]. In this work, the collective states of the Ising model on the 

Bethe lattice are investigated and its trend of increase is examined. 

 

1. Ising Model on the Bethe Lattice  
Ising type models with spin greater then ½ have rich fixed point structures. The greatest interest in these models arises 

partly from the unusually rich phase transition behavior they display as their interaction parameters are varied and partly from 

their many possible applications [16]. For the case of spin one half particles on each lattice site, the z component of spin can 

point either up or down, which is usually denoted by 1 . The spin on neighboring sites ij  then interacts by jiJ  . 

The influence of the crystal field on the phase diagrams of the bilayer spin-1 Ising model on the Bethe lattice in terms of the 

interlayer coupling constants J1 and J2 of the two layers and interlayer coupling constant J3 between the layers for given 

values of the coordination number z has been studied [17] by using the recursion relation scheme. 

 

The Ising model with a magnetic field can be solved exactly, analytically, for a one dimensional chain. In two 

dimensions, it can be solved exactly without a magnetic field as first done by Onsager [18]. The Hamiltonian to solve exactly 

for the Bethe lattice is [19] 

       

j

iij

ji hJH    .        (1) 

where Hh   is the Zeeman energy in a magnetic field and i  is a variable which takes the values from the set 

  ,1,1,   . The first sum in (1) goes over all nearest neighbor (NN) pairs of the Bethe lattice, and the 

second over all sites. jiJ   contains all possible nearest neighbor (NN) pair interaction  and jh   includes all possible 

single interactions. The parameter z is the coordinator number. It is the number of first neighbors for each site. A related 

parameter is r = z – 1, called the branching ratio. When a particle comes to a site, it has r choices of paths to move forward. 

Here, the particles are not moving but only their spins interact. 

If we construct an Ising model on the complete Cayley tree, then the partition function Z contains contributions from 

both sites deep within the graph, and sites close to or on the boundary. The contribution from the latter is not negligible, even 

in the thermodynamic limit. If one considers the total partition function, then one is considering the 'Ising model on the 

Cayley tree'. This problem has been solved [20] and has some quite unusual properties and will not be considered here. 

Instead the contribution to Z from sites deep within the graph shall be considered, i.e. from the Bethe lattice. 

If one makes a low temperature expansion for any regular lattice, then to second order the only properties of the lattice 

that one need to know are the number of sites and the coordination number. To third order one needs the number of triangles 

in the lattice, to fourth order the number of tetrahedra (i.e. clusters of 4 sites all connected to one another) and other highly 

connected 4-point sub-graphs, and so on. An interesting simple case is when there are no circuits at all, and hence there are 

no triangles, tetrahedra, etc. Then one obtains the Ising model on the Bethe lattice. 

   The Bethe lattice shown in Fig.1 is convenient for solving the Ising model. The bottom of the figure is called the 

boundary of the lattice. The partition function is obtained by averaging the spins at the boundary and then moving inward 

row by row.  

The first step is to average all the spins in the j = 0 row. Each spin in the j = 1 row is connected to r spins in the j = 0 row. 

Let   denote a spin on the j = 1 row and let  r 21 ,  denote the r spins connected to it in the j = 0 row. Averaging 

this small contribution of the partition function Z gives 

  












j

jji hJZ exp
     (2) 

      rr hJZ  ...expis,That 2121 

 

   rh hJCoshe   2      (3) 
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                            Fig. 1.  Bethe Lattice for z = 3 with a boundary.  

 

Each spin has an effective interaction with its r neighbors in the lower row of   rJh   1 . In the 

nonmagnetic state, the sum over the neighbors will average out to a small number. In the magnetic state, the sum over the 

neighbors could add up to +r. It is useful to define the effective magnetic energy hj which acts upon the spin in row j. 

Let jj hB   (a shorthand notation), hence 


j

j

B
h   

For the first row, there are no spins below, so that ho = h, hBo  . For the second row, 1B is defined from eqn. (3) as 

   r

o

hB
JBCosheeA 

 21

1      (4) 

Setting 1 gives two equations which are solved for two unknowns (A1, B1): 

   r

o

hB
JBCosheeA   21

1      (5) 

   r

o

hB
JBCosheeA   

21

1      (6) 

 
  












JBCosh

JBCoshr
hB

o

o




 ln

2
1      (7) 

where h  is from the energy of the spin in row j = 1 

     221

r

JBCoshJBCoshA oo

r      (8) 

The factor of oB  is inserted instead of h  in the argument of the hyperbolic cosines since the effective field is associated 

with the spins on the lower row. Expanding the term inside the brackets in eqn. (7) from trigonometry, gives 

 
 

       
       JSinBhSinJCoshBCosh

JSinBhSinJCoshBCosh

JBCosh

JBCosh

oo

oo

o

o

















 

 dividing both the numerator and denominator by    JCoshCosh o   gives  

 
 
 

   
 hhBh

JhBh

JBCosh

JBCosh

o

o

o

o









tantan1

tantan1









  

Let     xJhBh o tantan  , then  

 
 
  x

x

JBCosh

JBCosh

o

o










1

1




 

But  

xh
x

x 1tan2
1

1
ln 











       (9) 

Therefore  

 
  











JBCosh

JBCosh

o

o




ln  xh 1tan2     

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 43 – 48      



46 

 

The Ising Model on the Bethe Lattice.  Akpojotor, Babalola  and Idiodi     J of NAMP 
 

and substituting x  gives 

 
 

    hhBhh
JBCosh

JBCosh
o

o

o 



tantantan2ln 1












  (10)  

Substituting (10) into equation (7) gives  

     hBhrhB o  tanhtanhtan 1

1

     (11) 

The second step is to average the spins in the row j = 1 to give the effective field 22 hB   in the next row. This will give;  

For 22,1 hBj   

    JBhrhB  tanhtanhtan 1

1

2

     (12) 

For 33,2 hBj    

    JBhrhB  tanhtanhtan 2

1

3

     (13) 

Thus, the general recursion relation as the rows are averaged one by one is  

    JBhhrhB jj  tanhtantan 1

1



      (14) 

Hence      JBhhrhh jj 


tanhtantan
1

1

1




  (15)

 

As the spins are averaged row by row, the effective field jj hB   converges to the value in the interior of the Bethe lattice. 

This bulk value is denoted as B*. It obeys the self consistent non-linear equation. 

    JhBhhrhB  tantantan 1       (16) 

The solution to eqn. (16) describes the collective states of the Ising model on the Bethe lattice. 

 

1. States of the Ising Model on the Bethe Lattice  

The collective states of the Ising model on the Bethe lattice can be described from the solution to eqn. (16). 

Assume the zero magnetic field (h = 0) and ferromagnetic coupling (J>0). The transition temperature Tc, 






  c
B

c T
k

1  

is where the ordering begins as one lowers the temperature. At the transition temperature, the order parameter B* is zero and 

it increases in value as the temperature is lowered. It is infinitesimally smaller than Tc, hence equation (16) is 

 JhBrB ctan        (17) 

But    
r

Jc

1
tanh        (18) 

hence 

r
hJc

1
tan 1       (19) 

And   
c

B
c T

k
1  

therefore 

r
h

TK

J

cB

1
tan 1       (20) 

From eqn. (9) 

xh
x

x 1tan2
1

1
ln 











        

Let  
r

x
1

   then 

xh

r

r 1tan2
1

1

1
1

ln 



















      (21) 
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rr

r
h

1

1

1
ln

2

1
tan 











      (22) 

Thus  















1

1
ln

2

r

r

J
Tk cB

     (23) 















1

1
ln

2

1

r

r
JK cc      (24) 

For r = 1 which is a one dimensional chain, Tc = 0 and there is no ordered state at non zero temperature. For all other 

branching ratios r > 1, there is a well defined transition temperature. This is shown in Table 1 for some crystals. 

  Table 1.  Ferromagnetic transition temperature Kc(B) of Ising model on Bethe lattice from eqn. (24)  

  (d is the dimension, r is the branching ratio). 

Crystal d r Kc(B) 

Honeycomb (hc) 2 2 0.549 

Square (sq) 2 3 0.347 

Plane triangular (pt) 2 5 0.203 

Simple cubic (sc) 3 5 0.203 

Body centered cubic (bcc) 3 7 0.144 

Face centered cubic (fcc) 3 11 0.091 

 

Comparing the Bethe results in Table 1 with the exact results as shown for Ising model on crystalline lattices in two and three 

dimensions in ref. [21] and the percolation in the Bethe lattice for some crystals given in ref [22], it can be observed that the 

value of Kc(B) for the Bethe lattice is typically below the crystalline results by 5–15%. However, the Bethe lattice has the 

correct trend that Kc decreases and Tc increases as the branching ratio r increases as shown in Table 2 and Table 3. 

 

Table 2. The ferromagnetic transition temperature of Ising model on crystalline lattices Kc and the Bethe results Kc(B) 

(where d is the dimension and r is the branching ratio).  

 

d Crystal  r Kc Kc(B) 

2 Honeycomb 2 0.657 0.549 

2 Square 3 0.441 0.347 

2 Plane triangular  5 0.274 0.203 

3 Diamond 3 0.370 0.347 

3 Simple cubic  5 0.222 0.203 

3 Body centre cubic  7 0.157 0.144 

3 Face centre cubic  11 0.102 0.091 

 

Table 3. The site percolation and the ferromagnetic transition temperature Kc(B) of Ising model on the Bethe lattice. 

 

d Crystals r Kc(B) Site percolation 

2 Honeycomb 2 0.549 0.696 

2 Square 3 0.347 0.592 

2 Plane triangular 5 0.203 0.500 

3 Simple cubic 5 0.203 0.312 

3 Diamond 3 0.347 0.431 

3 Body centre cubic 7 0.144 0.246 

3 Face centre cubic 11 0.091 0.198 

 
2. Conclusion 

The Ising model on the Bethe lattice is examined with arbitrary branching ratio r and with hopping interactions between NN, 

NNN spins belonging to the same branch and under an external field. The Ising model on the Bethe lattice  of some 

crystalline lattices  were calculated  by solving the state of the recursion equations of appropriate effective fields numerically  
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and were compared to the exact results on crystalline lattices and results of the percolation in the Bethe lattices. It was clear 

that the Ising model on the Bethe lattice approximated closely the exact results with correct trend of decrease as the 

branching ratio increases. 
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