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Abstract 

 
 

In this paper we derive an expression for the embedding energy as a function of the 

background electron density using the physical interpretation of its slope and curvature 

at equilibrium and beyond. The total energy expansion in rapidly convergent series 

allows the characterization of the embedding energy function      by a second-order 

ordinary differential equation. Our modeled      captures the essential physics while 

maintaining simplicity - a quality which endows the embedded atom method (EAM) and 

concomitantly the modified embedded atom method (MEAM) with excellent numerical 

efficiency. Preliminary investigations of the parameters of Strontium attest to the 

validity of our theoretical model. 
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1.0 Introduction 
 

The modified embedded atom method (MEAM) is an offshoot of the embedded atom method (EAM) introduced by 

Daw and Baskes [1]. EAM and by extension, MEAM are commonly used to calculate the ground state properties of real 

metals. A detailed understanding of the energies in non-periodic structures like point defects, alloys, vacancies, impurities, 

surface phenomena etc. have been dealt with successfully by these models. The original model, EAM is based on the density 

functional theory (DFT) which incorporates many-body interactions while requiring some experimental quantities as input; it 

is computationally fast. 

    Daw and Baskes [1] gave a heuristic derivation using DFT and came up with an ansatz that 
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In Eq(1.1),      represents the embedding energy function,    is the spherical averaged atomic density and   is an 

electrostatic two-body interaction. The host electron density, assumed to be a linear superposition of contributions from 

individual atoms, is defined through equation  

  ∑  
 (   )

   

                                                                                                                                          

Eq.(1.1) is known for computational simplicity which adequately caters for defects and other physical phenomena in solid or 

liquid state of metal. So far, EAM features three important functions which are           and        
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The embedding energy function      is universal and is independent of host; its form is unknown and thus any choice is an 

approximation. The form of      adopted by Daw and Baskes [1, 2] in their calculations was determined by a complex 

fitting procedure. It is important to state that      and      are not uniquely determined by empirical or theoretical 

procedure. For example, Daw [3] adopted an EAM model that utilized the Thomas-Fermi-Dirac-von Weizsäcker approach 

for the kinetic energy with local exchange and correlation and frozen-electron distributions. 

     Despite the great successes recorded by EAM, it is plagued by some limitations. A particular drawback is its lack of 

angular forces or directional bonding. An attempt to improve EAM led to the Modified Embedded Atom Method (MEAM)  

[4]. The major difference between EAM and MEAM depends on the choice of the electron density    . Thus, in EAM      

has spherical symmetry while in MEAM      incorporates the         symmetries. 

     Although various modifications have been made in EAM leading to MEAM, there still exist the problems of lack of 

transferability, overestimation of monovacancy formation energies for some materials, non-applicability to materials with 

          among others. The various shortcomings point to the fact that some MEAM models are not valid. To ease out 

some of these problems we propose an embedding energy function which is deeply rooted in the perturbation theory of 

quasiatoms and density functional theory as pointed out by Stott and Zaremba [5] while incorporating the recommendation of 

first-principle calculations for a consistent embedding energy function.  

    The remaining part of this paper is organized as follows: Section 2 surveys briefly the popular embedding energy functions 

in literature with a view to analyzing their physical and theoretical structures; the new embedding energy function is 

formulated in section 3 while the preliminary results and findings on Strontium are presented in section 4 having tested our 
       Finally, section 5 concludes the work. 

 

2.0 Existing models 
    Usually the functional form of the embedding energy function is unknown. The information about      for densities well 

away from the equilibrium value may be obtained through the universal equation of Rose       [6]; it is an empirical equation 

of state of the expanded (or compressed) metal for which the electron density at each lattice site is substantially different 

from its equilibrium value. It is given by  
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where 

   
   

  

                                                                                                                                                           

B is the bulk modulus,    is the cohesive energy,    is the nearest-neighbour or equilibrium distance and   is the atomic 

volume. Total energy          and   is the number of atoms. In some early versions of EAM and MEAM [7, 8],      

was uniquely defined by a requirement that the total energy of the homogeneous solid be related to the universal equation of 

state (Eq.(2.1)) such that   
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where  
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and 

     
 

 
∑     

 

                                                                                                                                     

 (    ) is the energy to embed atom   in      which is the host electron density at atom   due to all other atoms. Function 

 (  ) is the electron density at atom   as a function of distance from its centre. Therefore the embedding energy function as a 

function of   is   
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A particular EAM version by Johnson [8] used an electronic density of form  

          [  (
 

  
  )]                                                                                                             

and a Born-Mayer potential of form  
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  )]                                                                                                           

Substituting Eqs.(2.7) and (2.8) into Eq.(2.6) yields 
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Note that    is the cut-off parameter between 1
st
 and 2

nd
 neighbours. To write      as     , Eq.(2.7) must be inverted to give  
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which implies  
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leading to 
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Also from Eq.(2.10)  
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By substituting Eqs.(2.11       ) into Eq.(2.9) one obtains [8] 
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where   

  (
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     and    are the fitting parameters. Note that    may be calculated from Eq.(2.2). 

       A basic limitation of EAM is that it spherically averages the electron density which precludes directional bonding. 

Baskes [4] adopted a modified embedded atom method (MEAM) of form  
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)                                                                                                                             

Eq.(2.13) has A as a fitting parameter and    as a density scaling parameter which is assumed to be the density in the 

equilibrium reference structure. Eq.(2.13) is believed to include directional bonding. Thus at a particular atom the mean-

square density is given by 

 ̅  ∑    

 

   

                                                                                                                                    

where           correspond to       and   symmetries respectively. 

    Yuan et al [9] modified Eq.(2.13) further by introducing a new adjustable parameter K to the embedding energy function 

to take care of the problem encountered in the calculation of the surface energy of bcc Lithium. It is simply given by    

        [
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)   ]                                                                                                          

Eq.(2.15) still suffers non-transferability when applied to bcc Vanadium where it overestimates the monovacancy formation 

energy by 50%. 

    Yet another model purportedly fashioned to correct the shortcoming of Eq.(2.15) and to take care of both positive and 

negative curvatures of  the embedding energy function (Cauchy-Discrepancy) is the one suggested by Oni-Ojo et al [10] 

given by   

        (
 

  

)
 

[   (
 

  

)
 

  ]                                                                                                   

where       and   are the adjustable parameters. Eq.(2.16) was formulated to satisfy a second-order ordinary differential 

equation of form 

   

   
 

  

 

  

  
 

  

 
                                                                                                                         

with provisos 

             and                                                                                                          

 

3.0  Formulation of a new embedding energy function 
     The goal here is to derive an embedding energy function which is an explicit function of the electronic density of the 

metal that is very simple to evaluate. Our approach relies on the attributes of      that it possesses a single minimum and be 

linear at higher densities. To make the zero of energy correspond to neutral atoms separated by infinite distances,      is 

constrained to go to zero at vanishing electron density. 

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 35 – 42      



38 

 

On the Modified Embedded Atom Method for Strontium.   Matthew-Ojelabi, Idiodi,  Ajibade  and Enoch     J of NAMP 

 
     If      is completely linear, its contribution can only be attributed to the action of a two-body potential. Thus it is the 

curvature of      that accounts for the many-body or local-volume effect of EAM and MEAM and hence its non-linear 

nature. Since pair potentials alone cannot represent adequately the elastic properties of real solids, we shall take care of the 

nonlinearity of      through the curvature of      at equilibrium. 

    Analytical expression can be assigned to      if we are mindful of the fact that: 

i. The slope of      does not depend on the bulk modulus or the cohesive energy and that the curvature        ⁄   is 

quite small. 

ii. The unrelaxed vacancy-formation energy involves changes in energy near equilibrium and thus it is dominated by 

the slope of     . That is, the shear modulus rather than the bulk modulus (or the cohesive energy) is the dominant 

parameter in determining the unrelaxed vacancy-formation energy.  

iii. The unrelaxed divacancy-binding energy and the unrelaxed surface energy contain terms which depend on      at 

the electron densities which are significantly smaller than the equilibrium electron density   . This is an indication 

that the curvature plays a larger role here while the shear modulus does not. 

Thus, by using a perturbation expansion for the inhomogeneous background density, the total energy of a quasiatom can 

be expressed as a function of the background density and its gradient. 

      The first-principle calculations also reveal information about the general behavior of      as follows: 

i. The embedding energy (defined relative to the free-atom energy) must go to zero for zero electron density, have a 

negative slope and a positive curvature for the background electron densities found in metal. 

ii. The pair-interaction must be repulsive. 

    If the energies of these quantities are expanded in rapidly convergent series, the lowest-order terms in the expansion 

depend on the slope of      at the equilibrium electron density and consequently do not depend on either the bulk modulus 

or the cohesive energy. Hence, we write (Taylor’s expansion about    ) 

                 
 

 
                                                                                                         

We shall identify the following: 

i.              (zero of energy) and             

ii.            
  

  
   due to non-linearity effect 

iii.             
   

       via         

iv.                    
As a result, Eq.(3.1) yields  

      
 

 
      

 

  
                                                                                                                  

where   and   are constants to be determined. Eq.(3.2) is the so called Cauchy-Euler equation [11, 12]. It has a power series 

solution (Frobenius method) of form  

     ∑   

 

   

                                                                                                                           

In Eq.(3.3),    are the constant coefficients. Substituting Eq.(3.3) into Eq.(3.2) produces the indicial equation given by  

                                                                                                                                        
with solution  

     
      √         

 
                                                                                                       

We recognize the fact that  

      {

        
 

           
                                                                                                                   

Eq.(3.6) plays a major role in shaping the functional form of     . Whatever the nature of       we shall choose a solution 

of Eq.(3.2) of form  

                                                                                                                                       

where   and   are the arbitrary constants. For example, if         and     we shall recover the popular      of 

Baskes [4] given by  
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 where    is a density scaling parameter. We propose an embedding energy function given by the functional form 
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)                                                            

where      and    are the adjustable parameters subject to 

   √                                                                                                                                                   
Eq.(3.8) yields           and        as it should unlike Eq.(2.12) which is not physical at     . 

       Though Eq.(2.17) and Eq(3.2) are essentially the same, our approach at formulating Eq(3.2) is somewhat different 

because of its sound theoretical foundation culminating in a simple explicit expression (Eq.(3.8)) for     . The derivation of 

Eq.(3.2) is devoid of any arbitrariness. 

 

4.0 Calculation Procedure: Application to the     lattice 
     To test our simple analytic model (Eq.(3.8)), we performed simple nearest-neighbour analytic calculations for     lattices. 

The essential equations for our calculations are: 
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Thus,  
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For nearest-neighbour contribution, Eq.(2.4) and Eq.(2.5) yield  

                                                                                                                                                

                                                                                                                                                 
      The energies of monovacancy, divacancy, planar-surface formations etc. for the     metals are dominated by the 

contributions before relaxation. These energies are readily calculated from their analytic expressions via Eq.(3.8) if    and    

are known. The monovacancy formation energy is 

                                                                                                                                      

where 
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where    is the total energy per atom while    is the cohesive energy. 

Therefore,  
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  )                                                                                                          

The surface energies are   
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From Eq.(3.8): 
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We shall make use of the following series expansions in Eqs.(4.15 – 4.18): 
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And (binomial expansion) 

         
  

  
 

        

  
                                                                                       

Thus, 
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The required experimental parameters are   ,     and lattice constant  . 

 

5.0 Results and Discussion  
     To test the reliability of our model, we calculated numerically the surface energies along the three different orientations 

and for ease of comparison chose Strontium as a prototype. We adjusted   ,    and   to match the experimental value of the 

monovacancy formation energy    . Our algorithm was based on a very simple procedure which utilized 1000 numerical 

grid points with spacing such that                . Thus values                               fitted 

Eq.(4.11) with             perfectly. Subsequently, these 3 parameters were used in Eqs.(4.12-4.14) to calculate the 

unrelaxed surface energies. The results, compared to the first principle calculations, other MEAM results and experimental 

data of deBoer et al [13] are presented in Table 1. The first 3 entries are the input parameters taken from Kittel [14].  

 

Table 1: MEAM results for Strontium using Eq.(3.8) compared to other theoretical calculations and experiment 

where available. 

 

Quantity d 

Lattice constant ( ) 6.08Å 

Cohesive energy (  ) 1.72eV 

Monovacancy formation energy (   ) 0.600eV 

Surface energy (ergs/cm
2
) Present work a b c  

       310.603 355.000  408.000  

       496.053 368.000 432.000   

       225.849 277.000 287.000 428.000 410.000 

 

                 a: Equivalent crystal theory calculation [15] 

                 b: First principle calculation [16] 

                 c: First principle calculation [17] 

                 d: Experiment [13] 
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Figure 1: Embedding energy function for Strontium (present work). 

 

The embedding function      (Eq(3.8)) plotted for Strontium was displayed in Fig.1. Our      has the desired behavior: a 

simple minimum at lower densities and a nearly linear upward slope at higher densities. It should be mentioned that 

convergence was very good in all the series considered and results definitely improved with the number of terms used. Our 

result for         deviates a bit from experiment but it is realistic. We are aware of the fact that the available first principle 

results and experimental data are generally uncertain. It is well known that various groups predict or measure different values 

for the same material. 

 

6. Conclusion 

      The purpose of the present work was to capture the essence of MEAM by taking into consideration the physical 

interpretation of each term involved in the total energy of a metal. Thus, we developed a near-analytic model for the 

embedding energy of a metal which reproduced very well some important features of the metals. The physical experimental 

inputs of our model were very few which gave it an edge over other MEAM models. They were the lattice constant, cohesive 

energy and the vacancy formation energy. 

     The preliminary results obtained for Strontium compared favourably with the available experimental and other theoretical 

results. Our calculated data for Strontium revealed that the first derivative (shear modulus) rather than the second derivative 

(bulk modulus) of the embedding energy function dominated the value recorded for vacancy formation energy. On the other 

hand, the curvature of the embedding energy function accounted for the many-body aspect of MEAM. 

     It should be stated that our calculation did not make use of the explicit form of the inter-atomic potential, instead   was 

subsumed into  . This is to say that our model is not constrained in any way by the specific form of the MEAM potential. 

Whatever the form of the MEAM potential, one can always find a means of incorporating it and other correlation functions 

into the model for better accuracy.  

     To appreciate the genuineness of our model, we have already applied Eq.(3.8) to several     and     metals. The 

agreements with experiments were found to be generally good. More detailed results shall be published soon. For further 

work, we are considering an extension to     metals and the inclusion of a background atomic density    which is angular 

and reference-state dependent. We are also considering incorporating electron correlations via density-gradient corrections.   
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