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Abstract 
 

This work presents a detailed study of the diagonal spin-spin correlation function 

of the one dimensional antiferromagnetic Heisenberg model using a new version of 

modified Lanczos technique. The wavefunctions obtain at the end of the iterations 

provide a recipe for a formula that correctly computed the diagonal spin-spin 

correlation functions of the Heisenberg chains. The correlation functions for these 

Heisenberg chains are found to be translationally invariant and independent of the 

actual value of the antiferromagnetic constant J . The correlations are also found to be 

antiferromagnetic in the region CLm  , where CL  is the correlation length and m  

is the separation between a reference spin and a spin under consideration.       

 
 

1.0 Introduction 
 

Most physical systems like semiconductors and most metals can be described as having non-interacting electrons. This 

simple approach is valid because the interaction (Coulomb) energy of electrons is much smaller than their kinetic energy. 

Another example is alkali atoms that undergo Bose condensation at low temperatures [1]. These atoms can be treated as non-

interacting bosons because their scattering length (i.e. the length at which they interact with each other) is much smaller than 

the average distance between the particles. However, there are important systems for which the interactions between the 

particles are not weak. These systems are called strongly correlated systems. It is one of the most intensively studied areas of 

research in condensed-matter physics [2]. The term “strong correlation’’ describes the state of affair when the interaction 

energy U dominates in controlling the motion of the electron [3]. Due to this strong Coulomb repulsion U, electrons in these 

systems remain localized in their respective sites. Any attempt for an electron to hop to a neighbouring site thereby reducing 

its kinetic energy t will amount to double occupancy of some sites which cost U. These interactions play a major role in 

determining the properties of such systems. The presence of this large U, characterizes these systems as insulators. These 

insulators driven by strong coulomb repulsion are called Mott insulators [4]. They are indeed different from the band 

insulators that are characterized by a full and empty one electron band. More so, the band insulators will require the state to 

be metallic at half filling. 

In These Mott insulators, the interactions between the electronic spins, charges, and orbitals produce a rich variety of 

electronic phases. The competition and/or cooperation among these correlated-electron phases can lead to the emergence of 

surprising electronic phenomena and functionalities and form the basis for a new type of electronics [5]. Electronic 

correlation is one of the most common and most useful statistics in condensed matter Physics. A correlation is a single 

number that describes the degree of relationship between two variables. In statistical mechanics, correlation function is a 

measure of the order in a system, as characterized by a mathematical correlation function, and describes how microscopic 

variables at different positions are correlated. In a spin system, it is the thermal average of the scalar product of the spins at 

two lattice points over all possible orderings [6]. The alignment that would naturally arise as a result of the interaction 

between spins is usually destroyed by thermal effects [7]. Electronic correlations can cause striking many-body effects like 

electronic localization, magnetism and charge ordering which cannot be described by the independent particle picture. The 

aim of this work is to study diagonal spin-spin correlation in the Heisenberg spin chains at different separations. The  
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remainder of this paper is structured as follows. In Sec. 2, we present the antiferromagnetic Heisenberg Hamiltonian.  Sec. 3 

describes the version of modified Lanczos technique (MLT) used in this work. Application of MLT to some finite systems is 

examined in Sec. 4. Sec. 5 presents the calculations of diagonal spin-spin correlation function. Discussion of results is 

presented in Sec. 6. Sec. 7 concludes the presentation. 

 

2.0  The Isotropic Antiferromagnetic Heisenberg Hamiltonian   
At half-filling, hopping of electrons is highly forbidden due to the strong onsite electronic repulsion U. The model that 

captures the physics arising from spin-spin interaction of localized spins is the Heisenberg antiferromagnetic model. This 

model in one dimension and in the absence of external magnetic field is given by   
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where J is the superexchange coupling parameter between spins on site i  and j  which decays rapidly with the 

distance between these sites. 


iS and  
x

iS  are the spin operator in the z- and x-direction. The spin raising (


iS ) and lowering 

(


iS ) operators help to preserve the antiferromagnetic ground state. These operators act in the reduced Hilbert space of no 

doubly occupied sites. This model has been able to capture the magnetic properties of correlated quantum spin systems in 

different degrees of freedom, be it spin1/2 or spin-1 degree of freedom [8-10]. The linear chain Spin-1/2 Heisenberg 

antiferromagnet AFM is of fundamental importance in many-body physics, as it is one of the few systems where a nontrivial 

ground state is known exactly [11]. Some Quasi 1D antiferromagnetic chains have experimentally been realised [12-15]. The 

first problem when solving such a model is to describe the spectrum of its Hamiltonian. The second problem is to compute 

matrix elements of spin operators between two eigenvectors of H and then all correlation functions of spin operators. At zero 

temperature they reduce to the average value of products of spin operators in the lowest energy level state (the ground state).  

 

3.0 The New Version of Modified Lanczos Technique   
Because of exponential growth of the Hilbert space with system size and memory requirement of present day 

computers, direct exact diagonalization of strongly correlated electronic Hamiltonians is not feasible, even after exhausting 

all the symmetries of the system. The modified Lanczos technique (MLT) is a modification of the standard Lanczos 

technique (SLT) [16-18]. Contrary to SLT in which the size of the matrix still increases with system size, in MLT the size of 

the Hilbert space is compressed to two. The diagonalization process proceeds with 2x2 iterations. The version of MLT 

algorithm presented in this thesis is a modification of the previous ones used by [9, 19-21]. The approach employed in this 

thesis provides a more convenient way of obtaining the improved energy and wavefunction in each iteration [22]. 

As in the standard Lanczos technique [17] and its modifications [19], this method requires the selection of an initial 

trial vector 0  (normalized to one). If H  acts on o  the result can be written as  
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where 
0

~
  is a normalized new state vector orthogonal to 0 .  
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This 2x2 matrix can easily be diagonalized. Its lowest eigenvalues 1a  is given by 
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 Its corresponding eigenvector 1  is given by 

                                          
00001

~
  ,                                                            (5) 

where the electronic weights 0  and 0  of 0  and 0

~
  respectively, are given by 
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and 1  are better approximations to 0  

(true ground state energy) and 0  (true ground state wavefunction) than 

0a  and 0  
respectively. The method can be iterated by considering 1  as a new initial trial vector and repeating the 

steps from Eq. (2) to (5). In each iteration, the orthogonal pairs ( 00

~
,  ), ( 11

~
,  ), etc are normalized. The iteration 

terminates when 1 ii aa . For detailed description of this technique, see ref. [22]. 

 

4. APPLICATION OF MLT TO HEISENBERG CHAINS 

 In this section, the version of MLT described in section 3 will be applied to six- and eight-site Heisenberg chains. 

 

1. APPLICATION OF MLT TO SIX- SITE HEISENBERG CHAIN 

A six-site Heisenberg chain is shown below. Periodic boundary conditions (PBC) is imposed on the spins system so 

that
zz

N SS 11  . Thus, the topology of the spin space is that of a circle as shown in Fig.1. In order to reduce the time of 

convergence when using MLT, it is 

 

 

 

 

 

 

 

 

 

 

Fig.1. A six-site Heisenberg chain. The topology of this system is that of a circle when subjected to periodic boundary 

conditions.   

necessary first to reduce the size of the Hilbert space by utilizing the various symmetries of the system under study. Detailed 

description of the various symmetries of the Heisenberg chains will not be discussed in this current work. Such elaborate 

discussion of the symmetries of the Heisenberg model is currently under study. We will only utilize the result obtained from 

this study in implementing MLT on the six- and eight -site chains.   

The Hilbert space of this system is of size 2
6
=64. The Hamiltonian is therefore block-diagonal with respect to the 

quantum numbers 
z

totS . For the subspace of 0z

totS , which contains the ground state,  the number of states sN  is given by 
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The basis states in this subspace of the Hilbert space are  
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0111005,1110004,1100013,1000112,0001111   

01100110,1100109,1001018,0010117,0011106   

10100115,01001114,10011013,01011012,10110011   

01010120,10101019,00110118,01101017,11010016   

By making use of translational and spin-inversion or reflection symmetries in the momentum space of K=0, the following 

reductions are obtained:                
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 The Hamiltonian of this system is given by 
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Having reduced the size of the system, the next step is the application of MLT to the reduced basis states as given in Eqs. (9), 

(10) and (11). Following the steps outlined in section 3, let 1  denoted by 0  
be the initial trial vector.

 
When H  in Eq. 

(12) acts on 0 ,  the results is 
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The vector 0
~  orthogonal to 0  is given by  
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Therefore, the 2x2 Hamiltonian matrix arising from the orthogonal vectors 0
~  and 0  gives 
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The improved ground state energy and the corresponding wavefunction are respectively given by  
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where 0  and 0  have been defined in Eqs. (6) and (7) respectively. 

 Convergence was reached after the 5
th

 iteration with the improved ground state wavefunction and energy given 

respectively as.    
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The numerical values of 1a , 2a ,..., 5a  are presented in Table 1. To check the validity and correctness of the version of MLT 

used in this work, the energy of the 5
th

 iteration is compared with the exact result. The electronic weights 4  and 4  of the 

new vector 5  assume their usual form as given in Eqs. (6) and (7) respectively. The parameters  i  and i  are 

accumulated numerical weight of i  . The wave function in Eq. (16) can also be recast in the form    
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where  iiiX  44  . The numerical values of iX  )2,1,0( i obtained at the end of the fifth iteration are: 

 120942.00 X  , 447260.01 X  and 886119.02 X . These values will be used to compute the diagonal 

spin-spin correlation function for six sites chain.   

 

II. APPLICATION OF MLT TO SIX- EIGHT HEISENBERG CHAIN 

An eight sites Heisenberg chain is shown in Fig. 2. Periodic boundary conditions (PBC) is imposed on the spins 

system so that
zz

N SS 11  . Thus, the topology of the spin space is that of a circle as shown in Fig.2. The size of this system 

is of 2
8
=256.  
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Fig.2: An eight-site Heisenberg chain. The topology of this system is that of a circle when subjected to periodic boundary 

conditions. 

 

The Hamiltonian is therefore block-diagonalized with respect to the quantum number 
z

totS . For the subspace of 0z

totS , 

which contains the ground state wavefunction and energy,  the number of states sN  is given by 
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The basis states in this subspace of the Hilbert space are shown below. 

111000014,110000113,100001112,000011111   

000111108,001111007,011110006,111100005   

1110001012,1100010111,1000101110,000101119   

0010111016,0101110015,1011100014,0111000113   

1010001120,0100011119,1000111018,0001110117   

0011101024,0111010023,1110100022,1101000121   

0110001128,1100011027,1000110126,0001101125   

0011011032,0110110031,1101100030,1011000129   

1110010036,1100100135,1001001134,0010011133   

0100111040,1001110039,0011100138,0111001037   

1010010144,0100101143,1001011042,0010110141   

0101101048,1011010047,0110100146,1101001045   

0110010152,1100101051,1001010150,0010101149   

0101011056,1010110055,0101100154,1011001053   

1010011060,0100110159,1001101058,0011010157   

0110101064,1101010063,1010100162,0101001161   

0110011068,1100110067,1001100166,0011001165   

0101010170,1010101069   

By making use of translational and spin-inversion or reflection symmetries in the momentum space of K=0, the following 

reductions are obtained:    
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The classes 0 , 3 , 5  
and 6  are unaffected by the spin-inversion symmetry.

 The Hamiltonian of this system is given by   
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The size of the system has now been reduced from 64 to 7. The next step is to apply MLT to the reduced Hilbert space. 

Following the steps outlined in section 3, let 1  denoted by 0  
be the initial trial vector.
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The vector 0
~  orthogonal to 0  is given by  
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Therefore, the 2x2 Hamiltonian matrix arising from the vectors 0
~  and 0  gives 
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5425
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00

JJ
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ba
H                                                       (28) 

The improved ground state energy and the corresponding wavefunction are respectively given by  

                  
     2519
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1
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2

1 2

000

2

00001 JJbcacacaa 




 

     

(29) 

                                             00001
~ 

                                                              
(30)  

The ground state energy and wave function were found to converge reasonably well after the 10
th

 iteration. The 

improve ground state wavefunction and energy obtained after the 10
th

 iteration are   

                         
   





  2

999

2

999910 4
2

1
bcacacaa

                                       

(31) 

                                               999910
~ 

 
    

                                                     
(32) 

The numerical values of 1a , 2a ,..., 10a  are presented in Table 2. The numerical weight 
9  and 

9  assume their form of 

Eqs. (6) and (7) respectively. The wavefunction in Eq. (32) can be recast in the form 

                                                            




6

0

10

i

iiX  ,                                                      (33)

 
where 

iii vsX 99   . The values of 
iX  obtained at the end of the tenth iteration are: 

021486.00 X , 139328.01 X , 218903.02 X , 388915.03 X , 657501.04 X , 

180346.05 X and 562246.06 X . These values will be used to compute the diagonal spin-spin correlation 

function for eight –site chain.    

 

Table 1. MLT  results for six-site Heisenberg chain. ‘ai’ is the energy of the ith iteration and ‘exact’ is the exact ground state 

energy.  These iterations were done with Mathematical 6.0 [23]. 
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J a1 a2 a3 a4 a5 exact 

-3.00 5.55234 -0.782394 -4.48369 -4.99999 -4.50000 -4.50000 

-2.00 3.70156 -0.521596 -2.98913 -3.00000 -3.00000 -3.00000 

-1.50 2.77617 -0.391197 -2.24185 -2.25000 -2.25000 -2.25000 

-1.00 1.85078 -0.260798 -1.49456 -1.50000 -1.50000 -1.50000 

-0.80 1.48062 -0.208638 -1.19565 -1.20000 -1.20000 -1.20000 

0.01 -0.01851 -0.021116 -0.02118 -0.02118 -0.02118 -0.02118 

0.02 -0.03702 -0.042232 -0.04236 -0.04236 -0.04236 -0.04236 

0.06 -0.11105 -0.126695 -0.12707 -0.12708 -0.12708 -0.12708 

0.10 -0.18508 -0.211158 -0.21179 -0.21180 -0.21180 -0.21180 



29 

 

Correlation Functions of the Antiferromagnetic Heisenberg Chains... Ehika and Idiodi  J of NAMP 
 

Table 2. MLT results for eight-site Heisenberg chain. ai is the energy of the ith iteration. These iterations were done with 

Mathematical 6.0 [23]. 

 

Continuation of Table .2 for the eight-site chain. 

 

 

 

 

 

 

 

 

 

 

 

 

5.0  Calculation of Diagonal Spin-Spin Correlation Function 
Correlation function is a static property of strongly correlated fermionic systems. It is defined as the probability of 

finding an electron at site i when there is an electron at site j.  This section presents the diagonal spin-spin correlation 

functions for four, six and eight Heisenberg chains. The diagonal spin-spin correlation function is given by 

                                                  

z

j

z

ir SSC                                                                          (34) 

The correlation function for any Heisenberg cluster can be obtained by using Eqn. (35) as shown below 

                                    







1

0

2

4

cN

i R

iiz

j

z

i
N

YX
SS  ,                                                                  (35) 

where Xi is the electronic weight for corresponding class i or basis state, NR is the number of basis states or representative 

in a particular class, Yi is the correlation in a particular class or basis states, and Nc is the number of classes in the reduced 

Hilbert space. 

 

I.  Correlation Function for Six-Site Chain 
The procedure for the calculation of Correlation function for six-site chain at separation m=1, 2 and 3 are shown in 

Tables 3, 4 and 5 respectively. The wavefunction obtained after the fifth Lanczos step has been used to set up these tables.    

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 21 – 34      

J a1 a2 a3 a4 a5 a6 

-3.00 7.45289 -0.15090 -5.11178 -5.83848 -5.96068 -5.98436 

-2.00 4.96860 -0.10060 -3.41186 -3.89232 -3.97378 -3.98957 

-1.50 3.72645 -0.07545 -2.55889 -2.91924 -2.98034 -2.99218 

-1.00 2.48430 -0.00503 -1.70593 -1.94616 -1.98689 -1.99479 

-0.80 1.98744 -0.04024 -1.36474 -1.55693 -1.58951 -1.59583 

0.01 -0.02484 -0.03309 -0.03557 -0.03627 -0.03645 -0.03649 

0.02 -0.04969 -0.06617 -0.07114 -0.07253 -0.07290 -0.07299 

0.06 -0.14906 -0.19852 -0.21343 -0.21759 -0.21869 -0.21897 

0.10 -0.24843 -0.33086 -0.35571 -0.36265 -0.36448 -0.36495 

1.00 -2.48430 -3.30859 -3.55711 -3.62653 -3.64478 -3.64948 

 

J a7 a8 a9 a10 

-3.00 -5.99166 -5.99517 -5.99718 -5.99835 

-2.00 -3.99444 -3.99678 -3.99812 -3.99890 

-1.50 -2.99583 -2.99758 -2.99859 -2.99917 

-1.00 -1.99722 -1.99722 -1.99906 -1.99945 

-0.80 -1.59778 -1.59871 -1.59925 -1.59956 

0.01 -0.03651 -0.03651 -0.03651 -0.03651 

0.02 -0.07301 -0.07301 -0.07302 -0.07302 

0.06 -0.21904 -0.21906 -0.21906 -0.21907 

0.10 -0.36507 -0.36510 -0.36511 -0.36511 

1.00 -3.65068 -3.65099 -3.65107 -3.65109 
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Table 3. Calculation of Correlation function for six -site chain at separation m=1

  

 

 

 

 

 

 

Table 4. Calculation of Correlation function for six -site chain at separation m=2 

 

 

 

 

 

 

 

 

Table 5. Calculation of Correlation function for six -site chain at separation m=3 

 

 

 

 

 

II.  Correlation Function for Eight-Site Chain 
 The procedure for the calculation of Correlation function for eight-site chain at separation m=1, 2, 3 and 4, are 

shown below. The wavefunction obtained after the tenth Lanczos step has been used to set up these tables. 

 

Table 6. Calculation of Correlation function for eight -site chain at separation m=1
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i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.120942 0.0146227 6 2 0.00121891 

1  -0.447260 0.200410 16 -4 -0.0166701 

2  0.886119 0.785331 2 -2 -0.1963333 

i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.120942 0.0146227 6 -2 -0.00121891 

1  -0.447260 0.200410 16 -4 -0.0166701 

2  0.886119 0.785331 2 2 0.1963333 

i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.120942 0.0146227 6 -6 -0.00365674 

1  -0.447260 0.200410 16 4 0.01667010 

2  0.886119 0.785331 2 -2 -0.1963333 

i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.021486 0.0004617 8 4 0.0000577076 

1  -0.139328 0.0194123 16 0 0.0000000000 

2  0.218903 0.0479185 16 0 0.0000000000 

3  0.388915 0.1512550 8 -4 -0.01890690 

4  -0.657501 0.4323080 16 -8 -0.054038400 

5  0.180346 0.0325247 4 0 0.000000000 

6  0.562246 0.3161210 2 -2 -0.079030100 
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Table 7 . Calculation of Correlation function for eight -site chain at separation m= 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Calculation of Correlation function for eight -site chain at separation m=3

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Calculation of Correlation function for eight -site chain at separation m=4 

 

 

 

 

 

 

 

 

6.0  Results And Discussion   
This section presents and discusses the results for the diagonal spin-spin correlation function for six and eight sites 

Heisenberg chain. These correlation functions for the various separations are summarized in Table 10. The six sites chain has 

both nearest neighbour (NN) and next nearest neighbour (NNN) spin-spin correlation functions arising from m=1 and m=2 

respectively, and an additional correlation function arising from m=3. The eight sites chain has four unique correlation 

functions due to separations m=1, 2, 3, and 4. Due to periodic boundary conditions, the correlation functions obtained for the 

longest distance for the various chains are equivalent to that of the shortest distance (NN). This behaviour is clearly obvious  
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i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.021486 0.0004617 8 0 0.00000000 

1  -0.139328 0.0194123 16 0 0.00000000 

2  0.218903 0.0479185 16 -8 -0.00598982 

3  0.388915 0.1512550 8 0 0.00000000 

4  -0.657501 0.4323080 16 0 0.00000000 

5  0.180346 0.0325247 4 -4 -0.00813117 

6  0.562246 0.3161210 2 2 0.07903010 

i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.021486 0.0004617 8 -4 -0.0000577076 

1  -0.139328 0.0194123 16 -8 -0.0024265400 

2  0.218903 0.0479185 16 0 0.0000000000 

3  0.388915 0.1512550 8 4 0.0189069000 

4  -0.657501 0.4323080 16 0 0.0000000000 

5  0.180346 0.0325247 4 0 0.0000000000 

6  0.562246 0.3161210 2 -2 -0.0790301000 

i  iX  
2

iX  RN  
iY  Rii NYX 42

 

0  -0.021486 0.0004617 8 -8 -0.000115415 

1  -0.139328 0.0194123 16 0 0.0000000000 

2  0.218903 0.0479185 16 0 0.0000000000 

3  0.388915 0.1512550 8 -8 -0.037813700 

4  -0.657501 0.4323080 16 0 0.0000000000 

5  0.180346 0.0325247 4 4 0.0081311700 

6  0.562246 0.3161210 2 2 0.0790301000 
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in Table 10. For example, for the six and eight sites chains we have that 
zZzZ SSSS 6121   and 

zZzZ SSSS 8121   

respectively. The correlation length which is defined as the distance in space beyond which the spins are uncorrelated with 

respect to the reference spin differs for the different chains. The correlation lengths for N=6 and 8 are 3 and 4 respectively. 

The dependence of correlation function (CF) on the separation m for N= 6 and 8 is shown in Figs. 3 and 4 respectively. 

These Figures clearly show that the correlation function decays exponentially with distance. The correlation length (CL) from 

these curves is the value of m at which CF  has its lowest value. The alternating values of +ve and –ve value for the CF is 

evidence that the spins are antiferromagnetically correlated. As observed from Table 10 and Figs. 3 and 4, correlation is 

found to vanish for m>CL. Thus, the CF obtained for m>CL are repetition of the ones obtained for m≤ CL.  

 

Table 10. Correlation functions for four, six and eight sites Heisenberg chains at separations m from the arbitrary chosen 

reference spin at site 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Correlation function for six- site chain 

 

 

Fig. 4. Correlation function for eight- site chain  
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7.0  Conclusion 

This current work employed a new version of modified Lanczos technique (MLT) for the calculation of diagonal spin-

spin correlation function of six- and eight-site Heisenberg spin chains. First, the version of MLT employed in this paper was 

used to obtain the exact numerical ground state energy of six- and eight- site chains. The result obtained at the end of this 

iteration was used to develop a formula that correctly computed the correlation functions of the Heisenberg chains of six- and 

eight-site.  The diagonal spin-spin correlation function (CF) for these Heisenberg chains were found to be antiferromagnetic 

in the region m≤CL, where CL is the correlation length and m is the separation between a given spin and a reference spin.  

The correlation was found to vanish for m>CL. Thus, the CF obtained for m>CL are repetition of the ones obtained for m≤ 

CL. This shows that the CF is translationally invariant and independent of the actual value of J. The idea brought forward in 

this work is simple and can be generalized to other models and more complex systems.  
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