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Abstract 
 

This paper presents a more practical approach, with no reference to group theory 

terminology on the use of symmetries in the exact diagonalization of Heisenberg spin 

systems. From the knowledge of these symmetries, a simplified version of the 

Heisenberg model is obtained. This simplification helps to solve the problem of applying 

the Heisenberg model to all the basis states in a finite system.  Here, one dimensional 

lattices are considered.  

 
 

1.0 Introduction 
 

The size of Hilbert space of many body systems is known to increase exponentially with system size. With current 

memory limitations of present day computers, it becomes difficult to carry out full exact diagonalization of finite size 

clusters. Theorists are therefore confronted with the formidable task of developing mathematical tools or techniques that can 

drastically reduce the size of the Hilbert space. Several methods like Lanczos technique, quantum Monte Carlo numerical 

simulations, variational approach, perturbation etc have been developed over the past years to tackle this problem [1-4]. 

These methods are still confronted with the problems of diagonalizing large matrices, slow convergence to the ground state 

and sign problems. More so, for these aforementioned methods to be effective in solving quantum many body problems, they 

must first utilize the symmetry properties of the systems.  

Symmetry can be understood as similarity, correspondence, or balance among systems or parts of a system. 

Symmetry generally conveys two primary meanings. The first is an imprecise sense of harmonious or aesthetically pleasing 

proportionality and balance such that it reflects beauty or perfection [5, 6, 7]. The second meaning is a precise and well-

defined concept of balance or "patterned self-similarity". In physics, symmetry is conceived as an aspect of a physical system 

that remains unchanged under certain transformations according to a particular observation. The symmetry properties of a 

physical system are intimately related to the conservation laws characterizing that system. Noether theorem gives a precise 

description of this relation [8]. The theorem states that each continuous symmetry of a physical system implies that some 

physical property of that system is conserved. Conversely, each conserved quantity has a corresponding symmetry. For 

example, the isometry of space gives rise to conservation of linear momentum, and isometry of time gives rise to 

conservation of energy [9-13]. The aim of the current presentation is to utilize the symmetries of Heisenberg systems in 

reducing the size of its Hilbert space. This was demonstrated on four, six and eight Heisenberg spin chains using conserved 

quantum number 
z

totS , spin inversion and translational symmetries. 

The paper is structured as follows. In Sec. 2, we present the Heisenberg Hamiltonian.  Sec. 3 presents the various 

symmetries and conservation laws for quantum spin systems. Application of these symmetries to some finite systems is 

examined in   Sec. 4. Discussion of results is presented in Sec. 5. Sec. 6 concludes the presentation. 

 

2.0  The Isotropic Heisenberg Spin Hamiltonian   
The Heisenberg Hamiltonian is a quantum mechanical analogue of the Ising model [14]. This model is a variant of 

the Hubbard model at half filling and large onsite Coulomb repulsion U, which enforces the constraint of singly occupied 

site. The model, describing the pairwise interactions between localized spins, is one of the most fundamental models of  
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correlated quantum matter. In spite of its simple mathematical form, it has an unimaginable richness, arising from 

dimensionality and geometrical constraints, competing exchange interaction, the type of spin degrees of freedom, and 

additional interactions with external magnetic fields or other degrees of freedom such as phonons. This model simply reads 
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where J is the superexchange coupling parameter between spins on site i  and j  which decays rapidly with the 

distance between these sites. 


iS  and  
x

iS  are the spin operator in the z  and x  direction. The spin raising (


iS ) and 

lowering (


iS ) operators help to preserve the antiferromagnetic ground state. These operators act in the reduced Hilbert space 

of no doubly occupied sites.  There are various version of the Heisenberg Hamiltonian, but this presentation shall be 

concerned with the study of isotropic Heisenberg model. In the isotropic case, the coupling constant J  is taken to be the 

same in all directions.  

  

3.0   Symmetries and Conservation Laws for Quantum Spin Systems 

For electronic one-band models, the size of the 
zS  

–bases set grows exponentially with the system size. For the 

Heisenberg model for example, the size of the Hilbert space is 2
N
 which gives approximately 10

6
 states for N=20. Such 

memory requirements are beyond the reach of the present day computers. In practice, this problem can be considerably 

alleviated by the use of symmetries of the Hamiltonian or the geometry of the system that reduces the matrix to a block-

diagonal form. The following symmetries will be employed for the exact diagonalization of Heisenberg spin chains. 

 

I.    Conservation Of Quantum Numbers  

 NUMBER OF PARTICLES: This is the most obvious symmetry in quantum many body systems in which the 

number of particles in a system is usually conserved at least for a fermionic problem.  

 TOTAL PROJECTION OF SPIN (
z

totS ): This is the simplest example of magnetization ( zm ) conservation. The 

magnetization of a given state is given by  

                                                                     



N

i

z

iz Sm
1

                                                         (2) 

This conservation of total 
zS  makes it possible to work within a given 

zS  sector. It gives rise to a block–

diagonalized matrix, with each block corresponding to a given zm . The number of states in the largest block ( 0zm ) for 

the Heisenberg model is given by  

                                               

 
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!
2

!
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

N

N
N s                                                                  (3) 

 TOTAL MOMENTUM (K): The total momentum K of the system is also conserved. This symmetry, as illustrated 

in Fig.1 can be used to further split the blocks, introducing a reduction of   1/N in the number of states. Here, 

momentum states are constructed using translational invariance of the system under study.  

 

 

 

 

 

 

 

 

Fig.1. Reduction of system size by 
z

totS   and k. (a) Unblocked Hamiltonian matrix. (b) Blocked matrix after application of 

z

totS . (c) Further splitting of blocks after application of total momentum K. 

 

II. Translational Symmetries    

These spatial symmetries are represented by transformations of the form  and describe those 

situations where a property of the system does not change with a continuous change in location. Translational symmetries are  
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found in translational invariant systems. Translational invariance exits in systems with periodic boundary conditions, for 

example a 4-site chain with periodic boundary conditions. The eigenstates of translational invariant systems are eigenstates of 

the translational operatorT , i.e. 

                                                         
 iKeT  ,                                                          (4) 

where the momentum quantum number K  is given by 

                                        

1,,1,0
2

,  Nm
N

m
K 


                                                        (5) 

 N  is the number of lattice sites and m  is an integer number labelling the quantization state. This gives us a recipe to 

construct translationally invariant basis states which have momentum K  as a good quantum number. For a Hamiltonian H  

and a spin basis state
z

N

zz SSS ,,, 21  , the operator T  has the following properties: 

                               

z

N

zz

N

z

N

zz SSSSSST 1121 ,,,,,,                                                       (6) 

                                                          
  0, HT                                                                    (7) 

Eq. (7) implies that T  commutes with H , giving rise to momentum blocks of H . A momentum state can therefore be 

constructed from any representative state by using the eigenstates of T  with given K. This momentum state is given by 
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where 
z

N

zz SSSa ,,, 21   is the representative of a given class and aN  is the number of basis states in a given class.  

The factor aN/1  ensures that a given class is normalized. If a  and b  are representative of two classes, then  

                                      
 1,...,1  NrbaT r

                                                        (9) 

In general, the total weight of the basis states produced by a translation operator 
rT  is given by 

                                     
)(2 ...1 rNiKKriiKr eee                                                       (10) 

This weight will vanish unless 2NKr  . The total weight of a given class is then rNa / . Normalization of state 

)(Ka  with periodicity aR  gives 
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The basic construction is to find all allowed representatives ),...,,( 21 Maaa  and their periodicities ),...,,( 21 MRRR . The 

block size M is initially not known, but is approximately 1/N of fixed zm  block. It also depends on the periodicity constraint 

for a given K . 

 

III. Spin- Inversion Symmetry  

These are represented by transformations of the form  and indicate an invariance property of a system 

when the coordinates are 'inverted'. The spin inversion operator Z on a basis state is defined as   

                                       

z

N

zzz

N

zz SSSSSSZ  ,,,,,, 2121 
                                     

(13) 

In the magnetization block mz =0, the eigenstates of the operator Z can be used. An eigenstate of Z can be defined as  

                             

.)1)(1)((
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
                          (14) 

                             
),,(),,( zpkazzpkaZ    ,   1z                                              (15) 

In the block mz =0, both reflection and spin inversion symmetry have the same effect. 
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4.0 Application of Symmetries to Finite Heisenberg Chains  
In this section, the various symmetries of the Heisenberg chains will be combined simultaneously to bring about a 

drastic reduction in the size of the Hilbert space.  

I. Four-Site Heisenberg Chain  
A four sites Heisenberg chain cluster is shown below. Periodic boundary conditions (PBC) is imposed on the spins 

system so that
zz

N SS 11  . Thus, the topology of the spin space is that of a circle as shown in Fig. 2. 

 

 

 

Fig. 2. A four-site Heisenberg chain. The topology of this system with periodic boundary conditions is that of a circle.  

  

The Hilbert space of this system is of size 2
4
=16. Application of the Quantum number 

z

totS  to the above system will generate 

five subspaces characterized by the quantum numbers: 2z

totS , 2z

totS , 1z

totS , 1z

totS
 
and 0z

totS .The 

Hamiltonian is therefore block-diagonal with respect to the quantum numbers 
z

totS . Since emphasis is on the ground state 

properties of the system, calculations will be restricted to the subspace of 0z

totS  which contains the ground state energy 

and wave function.  The number of states sN  in this subspace is given by 

                                              
    

6
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22
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N
N s                                                    (16) 

The basis states in this subspace of 0z

totS  are shown below. 

01016,10105,10014,00113,01102,11001  ,                                  

where 1 denotes an up spin and 0 denotes a down spin. The Hamiltonian of this system is given by 

             

 

 zzzzzzzz SSSSSSSSJ

SSSSSSSSSSSSSSSS
J

H
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         (17) 

First, in order to appreciate the beauty of symmetry, it will be worthwhile to attempt a direct analytical 

diagonalization of the above Hamiltonian in the subspace of 
0z

totS  without making use of symmetries or conservation 

laws. The action of H  on each of the basis states gives the following results
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4
2

3
2

2
2

1
2

55
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JH   

1001
2

0011
2

0110
2
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2

010101016
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JHH 
 

4
2

3
2

2
2

1
2

66
JJJJ

JH 
 

The resulting Hamiltonian matrix from these operations is shown below 
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
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H
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220000
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                                  (18) 

The eigenvalues of this matrix are: 

JJJ  654321 ,,2,0,0,0  , 

where J24   is the ground state energy. 

 The size of the above matrix can further be reduced either by using translational or spin inversion symmetry. First, 

the translational symmetry is considered. Now, the periodicity of the system implies that the eigenstates of this cluster are 

eigenstates of the translational operator T , define by 

                                                    
 )exp( rkiT r 


                                           

(19) 

This provides a recipe to construct translational invariant basis states with an additional fixed quantum NnK 2 , where 

n=0, 1, 2 ...N. The class of a given K generated by the action of the operator T  on a given representative of a class is given 

by 
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where N is the number of sites, aN  is the number of basis states or periodicity in the class K ,
 
and 0

 
is the 

representative of that class. Working in the subspaces of ,,0  KK  and 2K  as provided by 1,0  nn
 

and 2n  respectively, the following reductions are obtained. 
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The action of H  on each of these classes gives 





 00 2 kk JH 

 






 000 2 kkk JJH 

 

0


 kH

 



   kk JH

 

02 


 kH  

02 


 kH

 This gives rise to a block-diagonalized matrix in the subspaces of ,,0  KK  and 2K  as shown in Eqs. (21), 

(22) and (23) respectively. 

                                                 











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JJ

J
H K

2

20
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with eigenvalues -2J and J 

                                                











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J
HK

0
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with eigenvalues 0 and –J 

                                                









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2KH

                                                                 

(23) 

with eigenvalues 0. 

 Application of the spin inversion symmetry discuss in the section 3(III) gives the following reduction 

 11000011
2

1
  

 10100101
2

1
2   

 10010110
2

1
2   

The Hamiltonian for the ground state is contained in the ‘+’ block.  Thus, 

                                                


















00

00

J

JJJ

J

H                                                             (24)

 

with eigenvalues -2J, 0 and J. The four sites system also possesses reflection symmetry whose effect is the same with that of 

inversion symmetry in this subspace. In subsequent chains, the combined effect of these operators will be utilized in reducing 

the size of the system.  
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II. Six- Site Heisenberg Chain  

The Hilbert space of this system is of size 2
6
=64. Application of the Quantum number 

z

totS  to the above system will 

generate seven subspaces according to the quantum numbers:  

3z

totS , 3z

totS , 2z

totS , 2z

totS , 1z

totS , 1z

totS , 
 

0z

totS  

The Hamiltonian is therefore block-diagonal with respect to the quantum numbers 
z

totS . For the subspace of 0z

totS , 

which contains the ground state,  the number of states sN  is given by 

                                       
    

20
!3

!6

!2

!
22


N

N
N s                                                       (25) 

The basis states in this subspace of the Hilbert space are  

0111005,1110004,1100013,1000112,0001111   

01100110,1100109,1001018,0010117,0011106   

10100115,01001114,10011013,01011012,10110011   

01010120,10101019,00110118,01101017,11010016   

Since the system is translationally invariant, it is possible to construct translationally invariant basis states with fixed 

quantum number K.  By making use of the translational operator discussed in section 3(II) in momentum space of K=0 in 

conjunction with spin inversion symmetry, the following reductions are obtained.                     

 654321
6

1
0   

 181716151413121110987
12

1
1   

 2019
2

1
3   

The Hamiltonian of this system is given by  

   

 

   ZZZZZZZZZZZZ SSSSSSSSSSSSJSSSSSS
J

SSSSSSSSSSSSSSSSSS
J

H

166554433221161665

655454434332322121

2

2









       (26)

 

On account of these symmetry operations, the action of the spin flip term of the Heisenberg Hamiltonian on any of the classes 

can be written as 

                                      


j

jif j

J
H  

2
 

, 

                                                         

(27) 

where 
j

  is the numerical electronic weight of j  which arises from the action of the spin fluctuation term in the 

Heisenberg Hamiltonian. This factor is given by 

                                       ji

jij

j NK

nNK





 

 

, 

                                                 

(28) 
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where 
i

N is the number of basis states contain in the class i  that has been acted on by fH ; jN  
is the number of basis 

states in the new class  
j ; 

j
n is the number of basis states  in j  generated when fH  acts on any member of i ; 

i
K is the normalization factor of class i , and 

j
K is the normalization factor of j . The results obtained for these 

parameters for six-site chain are tabulated in Table 1. 

Table 1. Calculation of numerical weight 
j

  for six-site chain. 
0R ,

1R and 0R  are the representatives of 0 ,

1 and 2  respectively,
 0RHF , 1RHF  

and 2RHF are the actions of the spin flipping term on the 

representatives.   

 

 

 

 

 

 

 

 

 

The action of H  on the representative of a given class is shown below 

 000111100110001011
2

0001111 
J

HH  

From this operation, we have the following 

000111oR , 6
0
N , 12

1
N , 2

1
n , 6

0
K   and 12

1
K ,

 

where oR  is the representative of 

o , 
0

N  is the number of basis states in o , 
1

N  is the number of basis states in the new class 1 generated when 

fH  acts on any  0R , 
1

n  is the number of basis states emanating from 1  
in the single operation 0RH , 

0
K  is the 

normalization constant for o  and 
1

K  is the normalization constant for 1 . Substituting these values into Eq. (28) 

gives

 
2

126

2612

10

101

1












NK

nNK

 

Therefore, on account of Eq. (27), the action of H  on 0  
gives 

100
2

2

2


JJ
H  , 

where the electronic weight of 0  is obtained from the diagonal spin interaction part of H . Similarly, the action of H  

on the representative of 1  gives 

 001011001101000111010011101010
2

0010117 1 
J

HRHH  

Here, we have three new basis states namely one for 0 , two for 1  and one for 2 . Using the information provided 

in the Table 2 above, the values of 
0

  ,
 1
 and 

2
  are calculated below 

2
612

1126

01

010

0















NK

nNK

 
Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 9 – 20      

Class   
0  1  2  

 

i
N   6 12 2  

i
K  

 
6  12  2  

 

0RH F  
 0

0
n  2

1
n  0

2
n  

 

1RH F  
 1

0
n  2

1
n  1

2
n  

 

2RH F  
 0

0
n  6

1
n  0

2
n  
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2
1212

21212

11

111

1















NK

nNK
 

6

6

212

1122

21

212

2















NK

nNK
 

Therefore, the action of H  on 0  
gives 

2101
6

3

22

2


JJJ
H   

 Finally, the action of H  on the representative of 2  gives 

 1010103001011101001101100100110110010011010
2

10101019 
J

HH This gives six 

new basis states belonging to 1 . Using the information provided in Table 1 above, the value of 
1

  is calculated below  

6

6

122

6212

12

121

1















NK

nNK
 

Therefore, the action of H  on 2 gives 

212
2

3

6

3


JJ
H  . 

Hence, in the reduced basis 0 , 1 and 2  a 3X3 Hamiltonian matrix is obtained as given by Eq. (29) 

                                            




















23630

6322

022

JJ

JJJ

JJ

H                                           (29) 

This matrix can easily be diagonalized. The ground state energy is given by 

 52
2

1
JJEg 

                                                    

 

 

III. Eight- Site Heisenberg Chain 
 The Hilbert space of this system is of size 2

8
=256. Application of the quantum number 

z

totS  to the above system will 

generate nine subspaces according to the quantum numbers: 4z

totS , 4z

totS , 3z

totS , 2z

totS , 1z

totS , 

3z

totS , 2z

totS , 1z

totS and 0z

totS . The Hamiltonian is therefore block-diagonalized with respect to the 

quantum number 
z

totS . For the subspace of 0z

totS , which contains the ground state wavefunction and energy,  the number 

of states sN  is given by 

                                           
    

70
!4

!8

!2

!
22


N

N
N s

                                                  (30) 

The basis states in this subspace of the Hilbert space are shown below. 

111000014,110000113,100001112,000011111   

000111108,001111007,011110006,111100005   

1110001012,1100010111,1000101110,000101119 
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0010111016,0101110015,1011100014,0111000113   

1010001120,0100011119,1000111018,0001110117   

0011101024,0111010023,1110100022,1101000121   

0110001128,1100011027,1000110126,0001101125   

0011011032,0110110031,1101100030,1011000129   

1110010036,1100100135,1001001134,0010011133   

0100111040,1001110039,0011100138,0111001037   

1010010144,0100101143,1001011042,0010110141   

0101101048,1011010047,0110100146,1101001045   

0110010152,1100101051,1001010150,0010101149   

0101011056,1010110055,0101100154,1011001053   

1010011060,0100110159,1001101058,0011010157   

0110101064,1101010063,1010100162,0101001161   

0110011068,1100110067,1001100166,0011001165   

0101010170,1010101069   

By making use of the translational and inversion symmetries in momentum space of K=0, the following reductions 

are obtained.  

 87654321
8

1
0   


















2423222120191817

161514131211109

4

1
1

 


















4039383736353433

3231302928272625

4

1
2

 

 4847464544434241
8

1
3 

 


















6463626160595857

5655545352515049

4

1
4

 

 68676665
2

1
5   

 7069
2

1
6   

The Hamiltonian of this system is given by   

 

 

 zzzzzzzzzzzzzzzz SSSSSSSSSSSSSSSSJ

SSSSSSSSSSSSSS
J

SSSSSSSSSSSSSSSSSS
J

1887766554433221

18188787767665

655454434332322121

2

2











          (31) 

Table 2 provides the information for the determination of the numerical electronic weight of j (see Eq.27). 

Table 2. Calculation of numerical weight 
j

  for eight- site chain.
0R , 

1R ,...
6R   are the representatives of 0 ,

1 ..., 6  respectively. 0RHF , 1RHF ,..., 6RH F are the actions of the spin flipping term on the representatives  
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Using the 

information provided in the Table 2 for Eq. (28), the action of H  on the various gives 

100
2


J
JH   

3201
22


J
J

J
H 

 

412  JJH 
 

4313 2
2

 JJ
J

H   

654324 22  JJJJJH 
 

45  JH 
 

646 22  JJH 
 The Hamiltonian matrix arising from these operations is given by 

                           










































JJ

J

JJJ
J

J

JJ
J

JJ

J
J

J

J
J

H

2020000

000000

2
2

00

0020
2

0

00000

000
2

0
2

00000
2

                                      (32)                                                      

This matrix can easily be diagonalized numerically. For example, the ground state energy at J=1 is -3.65109. 
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Class  
0  1  2  3  4  5  6  

i
N  8 16 16 8 16 4 2 

i
K  8  

4 4 
8  

4 2 2  

0RH F  0
0
n  2

1
n  0

2
n  0

3
n

 
0

4
n

 
0

5
n

 
0

6
n

 

1RH F  1
0
n  0

1
n  2

2
n  1

3
n

 
0

4
n

 
0

5
n

 
0

6
n

 

2RH F  0
0
n  2

1
n  0

2
n  0

3
n

 
2

4
n

 
0

5
n

 
0

6
n

 

3RH F  
0

0
n

 
2

1
n

 
0

2
n

 
0

3
n

 
4

4
n

 
0

5
n

 
0

6
n

 

4RH F  
0

0
n

 
0

1
n

 
2

2
n

 
2

3
n

 
0

4
n

 
1

5
n

 
1

6
n

 

5RH F  
0

0
n

 
0

1
n

 
0

2
n

 
0

3
n

 
4

4
n

 
0

5
n

 
0

6
n

 

6RH F  
0

0
n

 
0

1
n

 
0

2
n

 
0

3
n

 
8

4
n

 
0

5
n

 
0

6
n
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5.0 Discussion Of Results  
In this work, finite even chains up to eight sites were considered. For the four sites chain, the initial system size of 

16 was blocked-diagonalized according to the subspaces of conserved 
z

totS  of the system. For this system, the subspace of 

0z

totS  which contains the ground state energy of the system was reduced from size six to two by employing the 

translational symmetry of the system. Finally, six- and eight-site chains were reduced from initial system size of 64 and 256 

to 20 and 70 respectively by using conservation of the quantum number 
z

totS . It was later reduced from 20 to 3 and from 70 

to 7 by utilizing the translational and spin inversion symmetries of the system. On account of these symmetries, a simplified 

version of the Heisenberg model is obtained. 

 

Conclusion  
This paper has demonstrated how symmetries arising from the interaction topology or due to the structure and 

representation of the system and control Hamiltonian can be effectively utilized in reducing the size of the Hilbert space. 

Rather than applying these symmetries separately, it was shown in this work that the various symmetries of a system can be 

exploited at the same time to bring about a drastic reduction in the size of the Hilbert space. The four sites chain was reduced 

from system size of 16 to 2, by concentrating only on the subspace of 0z

totS  and utilizing the translational symmetry of 

the system. Finally, six and eight sites chain were reduced from initial system size of 64 and 256 to 3 and 7 respectively by 

exploiting the translational and spin inversion symmetry and the same time. On account of these symmetries, a simplified 

version of the Heisenberg model is obtained. This simplification makes it easier to apply the Heisenberg Hamiltonian to the 

basis states of a finite system. The study in this work was restricted to the subspace of 0z

totS , since the focus is on the 

ground state properties of the system. This work though on small finite clusters has indeed elucidated the procedures that 

should be taken when performing large matrix numerical diagonalization. The reduction of the matrix into block-diagonal has 

the additional advantage that the particular eigenstates that emerge from the diagonalization are already partially 

characterized with respect to the quantum numbers that have been used to build up the Hamiltonian Sub-matrix.  

The use of symmetries in exact diagonalization can be discussed using the  

language of group theory. This formalism is often confusing and is not necessary. In this current work, a more practical 

approach is taken, with no reference to group theory terminology. Group theory is actually very useful when dealing with 

complex lattices, but the power of its formalism can perhaps be better appreciated after a thorough understanding of 

symmetry operations and block-diagonalization has been gained through less formal methods for simple lattices.  
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