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Abstract  

We study the continuity, momentum and coupled nonlinear energy and species 

convection-diffusion equations describing the in-situ combustion process in porous media. 

We assume the fuel depends on the space variable x . We prove the existence and 

uniqueness of solutions of equations. We show that temperature is a non-decreasing 

function of time. The time-dependent temperature and concentration profiles are obtained 

using finite difference method. 
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1. Introduction 

Flow simulations in porous media have a very wide range of environmental and 

industrial applicability. They are an important tool in fields such as ground water 

hydrology, civil engineering, petroleum production, ceramic engineering, the automotive 

industry and textile engineering. For instance, engineers simulate underground flow 

through porous rocks to predict the movement of contaminated fluid from solid waste 
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landfills into drinking water supplies. In industrial applications, harmful particles can be 

filtered from a fluid stream by flow through a porous medium, whose small pores do not 

permit the passage of the larger particles [1]. 

Many researchers have studied the oxidation of crude oil with air injected in 

porous media. These include Ayeni [2] who studied thermal runaway phenomena while 

investigating the reaction of oxygen and hydrogen. He provided useful theorems on such 

flows. Marchesin and Schecter [3] constructed a two-phase model for oxidation, 

involving air or oxygen and oil that include heat loss to the rock formation. De Souza et 

al. [4] studied the Riemann problem with forward combustion due to injection of air into 

a porous medium containing solid fuel. Olayiwola and Ayeni [5, 6] presented a 

mathematical model of in-situ combustion using high activation energy asymptotics. Redl 

[7] considered multi channel geometry to show the ability of the Lattice Boltzmann 

method to deal with fluid flow and heat transfer problems occurring in combustion 

processes. 

In this paper we extend the model investigated by Redl to include the continuity 

and momentum equations. We assume the fuel depends on the space variable x . We 

investigate the existence and uniqueness of solution. We also examine the properties of 

solution. To simulate the flow, we assume that the other end of reservoir is at infinity. 

2. Mathematical Model  

We consider an underground reservoir contained heavy oil. We assume that air is 

injected at the leftmost part of the reservoir, so that all propagation is one dimensional. 

One end of the reservoir is assumed kept at 0x  while the other end is assumed far 

away (i.e kept at x ). We also assume the fuel depends on space variable x . Then the 
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primary dependent variables are the temperature,  txT , , the oxygen concentration, 

 txCox , , the solid fuel concentration,  txC fuel , , and the gas product concentration, 

 txC p , . Under these assumptions, the unsteady equations that describe the in-situ 

combustion process are 

The continuity equation 
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The energy equation 
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The conservation equation for the oxidizer 
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The conservation equation for the solid fuel 
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The conservation equation for the gas product 
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It is simple to eliminate the continuity and momentum equations by means of streamline 

function, 

   
x
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,,                                                                                                            (2.7) 

The coordinate transformation becomes, 
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We make the additional assumptions that  ,, pfuel c , oxD2 , fuelD2  and 

pD2  are constant. Although these assumptions could be relaxed in the future, they 

considerably simplify the equations. The equations can be simplified as  
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where T  is the local gas temperature,   is the density, u  is the velocity along x  - axis, 

t  is the time, x  is the position, p  is the pressure,   is the dynamic viscosity,   is the 

thermal conductivity, pc  is the specific heat at constant pressure, Q  is the heat of 

reaction, D  are the diffusion coefficients, oxs  is the stoichiometric coefficient of oxidizer, 
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sfs  is the stoichiometric coefficient of fuel, ps  is the stoichiometric coefficient of gas 

product. A general form of the reaction rate is  

RT

E

fueloxov eCCkA


  ,                                                                                                (2.14)   

where A  is a pre exponential factor, ovk  is the overall reaction coefficient, C  are the 

concentrations,   and   are the orders of reaction, E  is the activation energy, R  is the 

ideal gas constant. 

The source term represents the consumption of fuel during the combustion process. 

 The initial and boundary conditions were formulated as  
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3. Method of Solution 

3.1 Existence and Uniqueness of Solution 

Theorem 1 

 There exists a unique solution of problem (2.10) – (2.13). 
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Then  (2.10)-(2.13) become 
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Using the Fourier sine transform (see Myint-U and Debnath [8], p. 333 - 335), we 
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and the solution of problem (3.2) in compact form as 
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Hence, there exists a unique solution of problem (2.10) - (2.13). This completes the proof. 
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3.2 Non-dimensionalisation 

 We make the variables dimensionless by introducing  
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and using (3.8) and (3.9) in simplified form, equations (2.10) - (2.13) (after dropping 
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This can be written as 
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  0,
2

2















tk

t
, 

where 

            




 








 1

0
2

, e
t

erfcbCtk f  

Hence, by Kolodner and Pederson’s lemma   0, t . This completes the proof. 

3.4 Numerical Solution  

In this section, we solve equation (3.12) - (3.15) numerically using finite 

difference scheme. The error function  








t
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2


 is defined as  











t x dxe

t
erf 2

0

22

2






                                                                                          (3.16) 

By representing the exponential function in the integral by its Maclaurin series we see 

that 
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
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

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n 
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
                                                                            (3.17) 

The complementary error function is defined as 

 

 



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
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
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
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





0
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2
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2
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2
1

2

2

2
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t
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t
erfc

n

n

t

x






                                            (3.18) 

Using finite difference approximations. Then (3.12) becomes 
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where 

          
2h

k
  

Equation (3.13) becomes 
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Equation (3.14) becomes 
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Equation (3.15) becomes 
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The initial and boundary conditions are 
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                                                                  (3.23) 

A computer program in Pascal codes was written to perform the iterative computations. 
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4. Results and Discussion 

First we have seen that if 10  anddc  in (3.12),  t, is a non-

decreasing function of time. In Figures 1 and 2 we display the graphs of   t, versus   

for various values of    and t . It is easy to see that  t,  increases as   and t  

increases. Figure 3 displays the graph of  t,  versus t  for various values of  . It is 

seen from figure that  t,  increases as   increases. Figures 4, 5 and 6 display the 

graphs of  tCox , ,  tC fuel ,  and  tC p ,  respectively versus   at various time t . It is 

seen from the figures that  tCox , ,  tC fuel ,  and  tC p ,  increases as t  increases.     

It is worth pointing out the effect of   as shown in Figures 1 and 3 indicating that 

there is increase in heat of reaction Q . When the heat of reaction is high, the rate of 

conversion of heavy oils into light oils, water and gas is high and consequently, the 

recovery rate is boosted. This is of great economic importance.  

 

             Figure 1: Plots of  t,  against   for equations (3.12) and (3.15) at various   

             values of  when =0.01,  =1,  =1, t =0.2.  
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            Figure 2: Plots of  t,  against   for equations (3.12) and (3.15) at   

            various time t  when =0.01,  =0.8,  =1,  =1. 

  

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0 0.5 1 1.5 2 2.5 

  

 t,  

t =0.05 

t =0.1 

t =0.2 

 

 

               Figure 3: Plots of  t,  against time t  for equations (3.12) and (3.15)  

               at various values of   when =0.01,  =1,  =1,  =1.5. 
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              Figure 4: Plots of  tCox ,  against   for equations (3.12), (3.13) and (3.15)  

              at various time t  when =0.01,  =0.8,  =1,  =1. 
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              Figure 5: Plots of  tC fuel ,  against   for equations (3.12), (3.14) and   

              (3.15) at various time t  when =0.01,  =0.8,  =1,  =1. 
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                Figure 6: Plots of  tC p ,  against   for equations (3.12) and (3.15) at   

                various time t  when =0.01,  =0.8,  =1,  =1. 
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Also the effects observed in Figures 2, 4, 5 and 6 respectively physically means 

that the local gas temperature, oxygen and solid fuel consumption and gas product 

production increases as time increases. 

5. Conclusion 

The equations of in-situ combustion in porous media have been presented by 

mathematical point of view. The equations have been solved by finite difference method 

and the results and discussion for that have been described. The graphical summaries of 

the system responses were provided. 

It can be concluded from the simulations that chemical reactions occurring due to 

injection of air into a reservoir have considerable effects on the phenomena of flow in the 

medium. The analysis has also shown that the parameters involved in the in-situ 
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combustion model have significant effects on temperature and concentration field of the 

system. 
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