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Abstract 

This paper focuses on obtaining stability regions of block methods developed in Chartier 

[8] via method of Boundary locus plot. In particular, the aim of this paper is to prove the 

L-stability of block methods in Chartier [8] for block size seven and eight.  
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1. Introduction 

Many numerical techniques are available for the solution of initial value problems (IVPs) 

in ordinary differential equations (ODEs) on parallel computers and these techniques 

depend on factors such as degree of parallelism, speed of convergence, computational 

expense, data-storage requirements, accuracy, and stability see, Brugnano and 

Trigiante [1], Burrage [2, 3], Petcu [4],  Zarina et al [5]. Chu and Hamilton [6], Shampine 

and Watts [7] suggest that the stability problem appears to be the most serious 

limitation of block methods. In Chartier [8], a family of high order block methods with 

superior linear stability properties compared to those of Sommeijer et al [9] is 

developed. This family of methods is proved to be L-stable for block sizes 6k , and 

conjectured to include L-stable methods of block sizes 7k  and .8k   
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2. Chartier’s Block Formulae  

In this section, we present the Chartier’s block formulae for block size .8k  In Muka 

[10], k-vectors specified as  
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are introduced. If 1 in (1), then the consecutive block overlap, this is the case in 

block methods developed in  Sommeijer et al [9] and Chartier [8], and for k  in (1) is 

the non-overlap in consecutive block defined in Chu and Hamilton [6], and Fatunla [11]. 

Block definitions with 1,,3,2  k  and 1 k have not being considered in 

literature. However, Muka [10] noted that solutions 1

][

mY  generated for 

 ,1,,1,,2,1  kkk provide cheap error estimate for variable step-size 

implementation. That is  

              ,1,,,2,1,1

][

1

]1[  

 kkYYError mm                             (2) 

The Chartier’s block formulae is of the form 

            )())((1 mmm YFcdiagI
h

AYY  


                                                         (3) 

where A is kk  coefficient matrix, I is the kk  unit matrix , diag(c) is kk   diagonal 

matrix with Tkc ),,2,1(   ; h is the step-size and ,   a constant parameter chosen in 

such a way as to improve the order of the method (3). The matrix A in equation (3) for 

,8)1(2k  with corresponding   values are given as   
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Two Point Block Coefficient:  
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Three Point Block Coefficient:  
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(5)  

The block definitions of others are similarly obtained. 

Four Point Block Coefficient: 
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Five Point Block Coefficient: 
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Six Point Block Coefficient: 
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Seven Point Block Coefficient:  
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Eight Point Block Coefficient:  
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3. STABILITY ANALYSIS  

The linear stability of (3) can be investigated by applying it to the standard linear test 

problem  

     0,  yy                                                                (11) 

This will give rise to the recurrence equation 

  ,,)( 1 hzYzMY mm                        (12) 

where  
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                        AcdiagI
z

IzM 1))((()( 
                                                                (13) 

is the amplification matrix. 

Definition 3.1   

The region of absolute stability AR  of block method (3) is  1))((:R  zMzA C , 

where ))(( zM  is the spectra radius of the amplification matrix )(zM and roots 

corresponding to 1))(( zM is simple. 

Definition 3.2  

A k-dimensional block method is said to be zero stable if the region of absolute 

stability }1))0((:{  MzRA C . 

Definition 3.3  

A k-dimensional block method is A-stable if the region of absolute stability . CAR  

Definition 3.4 (cf. Chartier [8]) 

A k-dimensional block method is L-stable if it is A–stable and   .0)( M  

An interesting feature in Chartier block methods is the fact that the eigenvalues of 

matrix A are known a priori and are given as  

                                      .0,1,1,0,1)(  


 kj
j

                                    (14) 

The (3) for k=2(1)8 is zero-stable.  If the method (3) is A-stable, it automatically implies 

that it is L-stable since  

0))((()( 1

limlim  



AcdiagI
z

IzM
zz                          (15) 
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holds. The first and most direct means in finding the region of absolute stability is the 

root locus plot method see, Lambert [12], Muka and Ikhile [13,14], another means and 

widely used in literature in determining region of absolute stability of numerical 

techniques is the method of boundary locus Fatunla [15], Lambert [16], Hairer et al [17]. 

The absolute stability region 
AR  associated with the Chartier’s formulae (3) with 

coefficients (4)–(10) are presented in the boundary locus plots below: 
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          Fig. 1: Stability Plot of Chartier’s formulae with Coefficient (4) 
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                     Fig. 2: Stability Plot of Chartier’s formulae with Coefficient (5) 
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                    Fig. 3: Stability Plot of Chartier’s formulae with Coefficient (6) 
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                  Fig. 4: Stability Plot of Chartier’s formulae with Coefficient (7) 
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                     Fig. 5: Stability Plot of Chartier’s formulae with Coefficient (8) 
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                        Fig. 6: Stability Plot of Chartier’s formulae with Coefficient (9) 
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                Fig. 7: Stability Plot of Chartier’s formulae with Coefficient (10) 
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Stable regions are points outside the enclosed curves. Since in figures (1)–(7), the 

entire left of the complex plane for block-sizes 8k  are contained in the stable region, it 

therefore follows that Chartier’s block formulae (3) is L–stable for block-sizes .8k  In 

Chartier [8], L-stability of (3) for k=7 and k=8 are guessed to be L-stable but with the 

boundary locus plots in figures 6 and figure 7 this guess is proven to be true.   

4. Numerical Experiment 

The suitability of Chartier’s block formulae for the integration of stiff IVPs in ODEs can 

be found in Chartier [8]. To further illustrate this, we integrate the test problem below 

using two-point Chartier’s block formulae (3) with step-size h=0.2 

Problem (cf. Zarina et al [5]) 

tetySolutionExact

teyyytfy

10

20

)(

32;)2(;10),(









 

Maximum Error .1010278.2 11  

If the stiff problem is solved using explicit Euler method, the restriction on the step-size 

h is .2h  Therefore the problem cannot be solved with explicit Euler for h=0.2. The 

problem solved with Chartier’s block formulae for h=0.2, show that they are suitable for 

stiff problems because of their L-stability properties. 

5. Conclusion 

Chartier’s conjecture is proved herein using the boundary locus plot method and simple 

numerical test performed to further illustrate their suitability for the integration of Stiff 

IVPs in ODEs.  
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