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ABSTRACT 

 

Water movement from the soil solution into the root xylem and then up into the shoot can 

be treated as fluid flow through a complex structure with variable hydraulic resistances.  The 

essence of modeling in plant biology is to understand how water and other materials are 

conducted through the tissues within the plant.  Mathematical approaches that lead to one 

dimensional equation are useful but their applications to modeling of flow through plant tissues 

have not been extensive due to the complexity of biological systems.  Most organs or tissues 

need to be considered in two or three dimensions because their underlying structures lack 

symmetry necessary for reducing the problem to one dimension.  In this work we determine the 

solution of steady state 3-dimensional equation of fluid flow in an isotropic medium. 
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1. INTRODUCTION 

Water is vital to plant life, not just for turgor pressure reasons, but much of the cellular 

activities occur in the presence of water molecules and the internal temperature of the plant is 

regulated by water. The xylem pathways go from the smallest part of the youngest roots all the 

way up the plant and out to the tip of the smallest and newest leaf. This internal plumbing 

system, paired with phloem and its nutrient transportation system, maintains the water needs and 

resources in the plant.  One of the essential functions of roots is to supply the shoot with water 
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from the soil. The process of water movement through roots is very different from that of ions 

which in most cases, involves active pumping across the plasma membrane into the cytoplasm of 

cells. 

An important goal in plant biology has been to understand how water and other materials 

are conducted through the tissues within the plant. The ability of plant tissues to conduct or store 

water depends, in part, on various hydraulic properties of the tissue, and understanding the role 

of these properties is an essential part of understanding the overall transport process. Since water 

is of such overriding importance to plant, the flow of water between the cell and its surrounding 

is of fundamental significance. What happens at the cellular level affects the gross movement of 

water and the water balance in the plant. 

Without energy, no movement can take place. The energy available for movement, or for 

any other work without change in temperature, is termed free energy. The free energy per mole 

(gram molecular weight) of any substance is the chemical potential of that substance. The 

chemical potential of water is termed water potential .  In a non-uniform medium (non-steady 

state), water moves from region of higher energy content (water potential) to a region of lower 

energy content.  The movement of water between two adjacent cells in the plant tissues, or two 

adjacent regions, is governed by the difference in water potential between the two. Philip  2,1  

was one of the first to develop a mathematical framework for describing water flow in plant 

tissues based on individual or sets of partial differential equation.  The differential equation 

contains a diffusion coefficient that was constant spatially but could depend on direction.  Molz 

and Ferrier  3  considered a one-dimensional partial differential equation for water diffusion 

through tissue, treating the cell wall (apoplasm) and cell cytoplasm (symplasm) flow pathways 

separately.  Silk and Wagner  4  provided an interesting example of how numerical solutions of 

an equation combining flow resistance and tissue growth can describe water uptake by roots. 

Related approaches to water flow through soil have been applied to models of water uptake by 

plant roots, where the equations for the soil component are referred to as Darcy’s Law or the 

Darley-Richards equation. As pointed out by Schulte and Costa  5  the mathematical approach 

developed by Phillip  2,1  was useful but their applications to modeling of flow through plant 

tissues have not been extensive due to the complexity of biological systems.  Most organs or 

tissues need to be considered in two or three dimensions because their underlying structures lack 
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symmetry necessary for reducing the problem to one dimension.  The boundaries of plant organs 

and their underlying tissues are often structurally complex and boundary conditions are often not 

fixed constants, but time dependent or involve flow into or out of the tissue.  In this work we 

extend the work of Schulte and Costa  5  by solving the steady state 3-dimensional equation of 

fluid flow in an isotropic medium. 

 

2. DERIVATION OF EQUATIONS 

We consider the diffusion of water through tissues which leads us to a partial differential 

equation for flow that incorporated cell water storage and the permeability of the cell to water.  

Thus we consider an isotropic transport system in which the parameters can vary spatially but 

not with direction.  In steady-state flow, any property may vary from point to point in the field, 

but all properties remain constant with time at every point.  The steady-state flow of water 

through various plant tissues has been described with an empirical equation similar to Ohm’s 

Law for electrical circuits. This law for water flow is also similar to Fick’s First Law 

 .
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Where J is the rate of volume flow (m
3
s

–1
) 

 is water potential  

  lK  is conductance per unit length  

  lR  is a resistance per unit length  

  x is a spatial variable. 

While non-steady-state flow on the other hand is somewhat more difficult to describe because of 

the ability of plant cells to store water, similar to capacitance in electrical circuits. A component 

similarity to inductance has also been described for water flow through plants  6 . 

Following the derivation by Schulte and Costa  5  the water potential and the quantity of water 

equation can be derived as follows: in 3 – dimension equation (2.1) describing flow as a function 

of water potential may be written as: 

  lKJ         (2.2) 
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Let Ω be a three-dimensional body where water flow is taking place. Consider within Ω any sub-

region Ω bounded by a closed smooth surface S. Then, the change in the quantity of water (Q) 

within the sub-region Ω during the time interval from 21  t tot  is given by 
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where 







n
.n is the normal component of , and l

aK  denotes lK  per unit area. 

On the other hand, the change in water potential of the subregion Ω as water flows in or out is 

related to the change in water volume through capacitance: 
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and by Chain rule, 
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Let vC  denote capacitance per unit volume. Then from equation (2.4) the change in the volume 

of water (V) within the subregion Ω during the time interval from 21  t tot  is given by: 
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Equating equations (2.3) and (2.5) since the change in the volume of water within Ω must be 

due to the quantity of water that flows across the surface S, thus we have that: 
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But    



S

dsnFdivF  .dv            (Divergence Theorem)   

The left hand side of equation (2.7) becomes: 
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Hence, equation (2.6) becomes: 
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Given that this holds for all subregions Ω and all times intervals (t1,t2), we have that: 
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3. METHOD OF SOLUTION 

In cylindrical form equation (2.4) can be written as  
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For steady flow .0

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t


 Hence the equation becomes 
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Since the medium is isotropic we divide equation (3.2) through by l

aK , to get 
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This is a linear second-order - differential equation.  Consider a solution of the form 

   )()()(,, zZrRzr          (3.4) 

Substitute equation (3.4) into equation (3.3) and divide through by ZR , then we have  
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Observe that the last term depends only on z and the first and second only on r and   

respectively. 

Let 2k  be the separation constant (constant parameters that satisfy an algebraic relation) 

We have that  
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Substituting equation (3.6) into equation (3.5),we have 
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Equation (3.6) has a straight forward solution. That is 

 kz exp Fexp(-kz) )(  EzZ       (3.8) 

For k=1,   00 Z  and Z(0) =-1,        (3.9) 

If we impose the boundary conditions as stated above on equation (3.8) we have that  
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Hence, equation (3.8) becomes  
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Figure 1: Graphical representation of equation (3.10) 

Equation (3.7) can be written as 

0
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From equation (3.11) the second term depends only on   and the other terms only on r. 

Using the separation of variable method and taken the separation constant to be 2m , we have that 
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Similarly the solution to equation (3.12) is 
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 msin  Dm cos )(  C        (3.13) 

For m=1, 0)0(1  and ,1)0(  ,        (3.14) 

If we impose the boundary condition above on equation (3.14), we observe that D = 0 and C = -

1, hence equation (3.13) becomes  

 cos )(           (3.15) 

 A graphical representation of equation (3.15) is shown in figure 2. 

 

Figure 2: Graphical representation of equation (3.15) 

Substitute equation (3.12) into equation (3.11) we have 
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Which can be re-arranged as 
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This is a Bessel differential equation of order m 

Thus   rJ m and  rJ m are two independent solutions of equation (3.17) and the complete 

solution is: 

     rBJrAJrR mm           (3.18) 
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Taking 1 BA , then equation (3.18) becomes  

     rJrJrR mm           (3.19) 

The graphical representation of Bessel Function of the first and second kind for 1m  is given 

in figure 3. 

 

Figure 3: Graphical representation of Bessel functions of order 1m  

 

Thus, the complete separated variable solution is: 

             kzkzrJrJzr mm expexpcos
2

1
,,         (3.20) 

 

4 CONCLUSION 

 Schulte and Casta  5 gave an analysis of the flow of water in plant tissues base on non-steady 

state flow in 1-diamension and gave an expression for higher diamension. However, we have 

been able to determine the steady state 3-dimensional solution of the flow of fluid in plant 

tissues. We hope this should prove useful in helping us to understand water transport through 

plant tissues and the interpretation of how the transport process is affected by the hydraulic and 

geometrical properties of the tissue. 
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