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Abstract 

Magnetic fluid hyperthermia is one of hyperthermia modalities for tumor treatment. The 

control of temperatures is necessary and important for the treatment quality. Living tissue 

is highly non-homogenous and the velocity of heat transfer in it should be limited. This 

work examines the existence of the steady case of Liu and Chen (2009) and proof the 

uniqueness of the theorem. The proof shows that only when gradient is specified that the 

solution is guaranteed. 

Introduction 

In magnetic tumor hyperthermia, the magnetic particles are localized at the tumor tissue, 

then an alternating magnetic field is applied to the target region, which heats the 

magnetic particles by magnetic hysteresis losses. These particles might act as localized 

heat sources (Liu and chi, 2009), worked on analysis of the temperature rise behaviors in 

biological tissues during hyperthermia treatment within the dual-phase-lag mode, which 

accounts for the effect of local no-equilibrium on the thermal behavior. The control of the 



blood perfusion rate is helpful to have an ideal hyperthermia treatment. The lag times 

affect the bio-heat transfer at the early times of heating. This work develops a hybrid 

numeric based on the Laplace transform, change of variables and the modified 

discretization technique in conjunction with the hyperbolic shape functions for solving 

the present problem. This similar method was used to solve various non-Fourier heat 

transfer problems and obtained the accurate result (Liu, 2007, 2008). The dual phase lag 

(DPL) model is used to predict the temperature rise behavior in a two layer concentric 

spherical region during magnetic tumor hypothermia treatment. The DPL model 

describes a macroscopic temperature with a micro-structural effect by introducing the 

phase lag times of heat flux and temperature gradient (Tzou, 1996). From the 

measurement temperature in Ref (Mitra et al 1995), Antaki (2005) predicted the phase lag 

time of heat flux to be 14-16s and the phase lag time temperature gradient to be 0.043-

0.056s for processed meet. 

 Hyperthermia technique also improves the efficiency of other cancer therapis such as, 

chemotherapy and radiotherapy. Insolated cells, which would not respond to 

chemotherapy or radiation alone, would be subjected to heat treatment. Hyperthermia in 

conjuction with chemotherapy causes the drug to penetrate deeper into the tumor while 

augmenting the efficacy of the drug delivered to the tumor. The increased efficacy of 

simultaneous utilization of the hyperthermia and radiotherapy or chemotherapy has been 

demonstrated in heat treatment of certain types of diseases (Wust, et al.,2002), such as 

breast cancer (Vernon et al,1996), cervical and bladder cancer (Zee,et al 2000), rectal 

cancer (Rau 1998), prostate cancer (Van Vulpen, 2004), head and neck cancer 



(Brizel1999), superficial tumors, lung and stomach cancer and pancreas and liver 

metastases. 

A comprehensive analytical investigation of bioheat transport through the tissue/organ is 

carried out including thermal conduction in tissue and vascular system, blod- tissue 

convective heat exchange, metabolic heat generation and imposed heat flux. Utilizing 

local thermal non-equilibrium model in porous media theory, exact solution for blood and 

tissue phase temperature profiles as well as overall heat exchange correlations are 

established, two primary tissue/ organ model representing isolated and uniform 

conditions, while incorporating the pertinent effective parameters,  such as volume 

fraction of the vascular space, ratio of the blood and the tissue  matrix thermal 

conductivities, interfacial blood-tissue heat exchange, tissue/organ depth, arterial flow 

rate and temperature, body core temperature, imposed hyperthermia heat flux, metabolic 

heat generation, and blood physical properties.(Mahjood and Vafai 2009). 

 

Mathematical Formulation 

We consider Liu and Chen (2009) 
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the temperature and heat flux at the interface of two regions is continuous. The boundary 

conditions are described as  
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and the initial conditions are  
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where the subscript k is the number of layer, k = 1 and k = 2 means the tumor and the 

normal tissue, respectively. The initial temperature iT  is regarded as the arterial 

temperature. 

 T is the temperature, k the heat conductivity, q the heat flux, t the time, and r the space 

variable, q  means the phase lag of the heat flux and T  means the phase lag of 

temperature gradient. The heat flux precedes the temperature gradient for Tq   . The 

temperature gradient precedes the heat flux for Tq   . 

where ,,, kc and T denote density , specific heat, thermal conductivity, and temperature 

respectively in two regions. bb c, and b  respectively are density, specific heat and 

perfusion rate of blood. mq is the metabolic heat generation and only is a function of r in 

the problem. 

 

Method of Solution 

Steady state 

We consider the steady case 

Let 2,1),(  iTTrH bii   



We assume that, following Liu and Chen (2009)  
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The boundary conditions are 
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Existence and Uniqueness of Solution 

Theorem 1: Problem (4) which satisfies boundary (5) has a unique solution 

Proof: We shall use shooting method technique 
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together with the boundary conditions 
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Also 
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 are continuous and bounded. Hence, the problem has a unique solution. 

This completes the proof. 

 

Non-dimensionalization of equation 

Let          

)( bTTrH   
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The boundary and initial conditions are  
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Thoerem 2: Problem (6) and (7) has unique solution 

Proof: By method of separation of variables 
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Further we assume that 
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This completes the proof.  



Discussion of the result 

The proof of theorem shows that it is only when we specify the gradient )0(3x  that the 

solution is guaranteed. 
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