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ABSTRACT 

Finite deformation of the dynamic Reissner-Sagoci problem for a solid 

cylinder of Ogden material deforming under torsion and extension is 

analyzed for stresses and displacements. The boundary value problem 

resulted into a non-linear second order partial differential equation for the 

determination of displacements. An analytic solution of this is sought using 

the method of simple waves reduction, which in turn gave rise to eigenvalue 

– eigenvector problem. A closed form solution is provided for the 

determination of stresses and displacements at any cross-section. 
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1. INTRODUCTION 

Reissner formulated the first problem of torsional vibration of the elastic half 

space in 1937. Seven years later solution was provided for the problem by 

Reissner and Sagoci [1]. Since then innvestigation has continued to centre 

on the static version. Many authors [2-18] have presented several variations 

of solutions of the Reissiner-Sagoci problem. However, not so much have 

been done for the dynamic version. This is expected, since the resulting 

equations are usually very highly non linear. The first attempt was made in 
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1944 [1] and the form of the solution was very unwieldy. Bycroft [19] in 

1956 used Busbridge’s analysis to obtain approximate solutions of a number 

of the dynamic variations of Reissner-Sagoci problem. Very recently 

Erumaka [20] presented an analytical solution of the dynamic Reisnner-

Sagoci problem as an integral equation involving hypergeometric series at 

intermediate level. 

This paper considers one of such dynamic cases of the Reissner-Sagoci 

problem for a cylindrical solid of an Ogden material which is forced to 

vibrate as a result of torsion applied at the top surface and simple extension 

on the longitudinal and lateral surfaces. 

2. Field Equations 

Let the cylindrical section of the half space be denoted by 

0 = {(r, , z) : o  r  a, 0    2, 0  z  h}  

in the undeformed configuration. The deformation which takes the point (r, 

, z) of the undeformed configuration to the point (R, , Z) of the deformed 

configuration  = {R, , Z)} is given by 

R = 
-1/2

r,  =  + w(z, t), Z = z     (2.1) 

where  is a positive constant  

The deformation gradient tensor F   is given by 
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where wz = partial derivative of w(z, t) with respect to z 

The left Cauchy-Green deformation tensor  

B   = TF F  

where TF  = transpose of F , is given by 
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where ||
2
 = 1 + wz
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The strain invariants are 

I1 = 
2
 + 
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 (1 + ||

2
) 

I2 = 2 + 
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2
 

I3 = 1          (2.4) 

Let us consider the Ogden Solid which is characterized by the strain energy 

density function of the form 

 W = 

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where W = 0 for m  n and mn are constants. In this paper we consider the 

case m = n = 1. For this case the stress tensor   for an incompressible solid 

is given by 
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where  is the hydrostatic pressure and I is the unit tensor. Using (2.4), (2.5) 

in (2.6) we have the non-zero components of stress as 

rr =  + 2
-1
 (I2 – 3) - 2(I1 – 3) 

 = - =2 ||
2


-1
(I1 – 3) -2 (I2 – 3)     (2.7) 

r = 2
-1/2
 (I2 – 3)wzr - 2

1/2
 (I1 – 3)wzr 

zz = - + 2
2
 (I2 – 3) - 2

-2
 (I1 – 3)||

2
 

Where 11 is replaced by  for convinience 

Using (2.7) the non trivial equation of motion is 
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which reduces to 

 (

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 + 
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p
  uz

2
) uzz = utt       (2.8) 

where  and  are constants 

3. THE BOUNDARY VALUE PROBLEM 

We consider a problem in which a cylindrical section of radius r is forced to 

rotate about its central axis 

With reference to Fig. 1 we need to solve equation (2.8) subject to the 

boundary conditions 
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u (z, 0) = h(z)        (3.1) 

where we have assumed that u = 0 as (r
2
 + z

2
)

1/2
    

We first re-write equation (2.8) as 

 utt = (n + m
2
uz

2
)uzz        (3.2) 

where n = 



 and m =  




  

Now by setting u1 = uz and u2 = ut, equation (3.2) reduces to the system 
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Now if we assume that there exists a scalar function  of z and t such that 

u = f()         (3.5) 
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Fig. 1: A cylindrical section forced to rotate about its central axis, z by a 

twist w(z, t) 
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then equation (3.3) can be expressed as 
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We see that equation (3.5) is an eigenvalue-eigenvector problem in which 

r =  (n + m
2
f1

2
)

1/2
        (3.6) 

are the eigenvalues and (f1 , f2) the corresponding eigenvectors. 

It is easy to see that this leads to the equation 

 f2 =  (n + m
2
f1

2
)

1/2
f1       (3.7) 

as the relation between the two eigenvectors. Integrating equation (3.7) we 

obtain 

 f2 =  (1 + 2)         (3.8) 
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Equation (3.8) is a first order non-linear partial differential equation of the 

form 

 G(z, t, u, p, q) = 0        (3.11) 

where p = uz, q = ut 
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We use the method of characteristics with the initial curve as 
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and the solution of the boundary value problem becomes 
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The corresponding stress components are got by using equation (3.13) in 

equation (2.7) 

4. SUMMARY AND CONCLUSION 

By employing method of reduction to simple wave forms we have succeeded 

in presenting an analytic solution to the dynamic Reissner-Sagoci problem 

for a typical incompressible solid as opposed to the parametric solution of 

[1] and hypergeometric series presentation of [20]. A careful substitution 

and simplification gives the stress components under the considered mode of 

deformation in the radial direction as 
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where K is a constant. We observe that the stress in the radial direction is a 

constant if  = 1, which agrees with the result obtained in [20] 

The hoop stress  gives on simplification 
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where u is as derived in (3.13) 

Also zz is given by 
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