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Abstract

In this paper, the Adomian Decomposition Method (ADM), a numerical method which gives the
solution as a series is presented. We have chosen to illustrate this method by solving first and
second order IVPs. Some examples are solved to illustrate the efficiency of the method,
comparison with exact solutions and Taylor series method is also given.
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1. Introduction

The Adomian Decomposition method provides the solution as an infinite series [1] in which each
term is determined and unlike other methods which are based on discretization principles ADM
does not avoid some fundamental phenomena, it also avoids linearization and perturbation [2].
The method can effectively solve a large class of linear and nonlinear differential and integral
equation [3], the method has been used to derive analytical solution for nonlinear ordinary
differential equation [4]. It is a better and more accurate solution method for determining

approximate or exact solution to 1\VPs.

2. Adomian Decomposition Method
Consider the IVP:
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u' = f(t, u)}
1
u(to) = ug =
Equation (1) is written in an operator form as:
Lu = f(t,w) (2)
where the differential operator
L= d 3
and the inverse operator given by
t
L= f dt 4)
0
Applying L~ on (2) and imposing the initial condition, we have
u(®) =uo + L7 f(t,w) (5)

f(t,u) is decomposed into Ru + Nu, where Ru is a linear differential operator and Nu is a
nonlinear operator
Adomian decomposition method defines the solution u(t) by the series

u() = ) uy(0) (6)

n=0

where the components u,, (t) are usually determined recurrently by using the relation



u, =F }

Unp1 = L7 (Ruy) — LM (Nuy) )

and F is the term arising from integrating the source term which satisfies the given condition.

The nonlinear operator N(u) can be decomposed into an infinite series of polynomial given by

N = A, ®
n=0

where A, are the so-called Adomian’s polynomials which are evaluated using the formula [6]:

Ap(t) = (%) (%)N(i(l%ﬂ) , n=012,.... (9)

=0

Substituting equations (6) and (8) into (5) gives

Z w, () = F(£) = LY (Ruw) — L1 (Z An) (10)

n=1 n=0

Then equating the terms in the linear system of equation (10) gives the recurrent relation

uo(x) = F(£) | an

Uns1(x) = —L7'(Ru) = L7H(4p), n=0

However, in practice all the terms of series (10) cannot be determined, and the solution

approximated by the truncated series Y.N_,u,, (t).

3. lllustrative examples
3.1 Example 1

Consider the linear IVP [6]:



u’ =1+ t)uy,

with the exact solution, u, where

Starting with an initial approximation,

and noting that

we haveatn =0

u0=1

t t
Uppp = ff(l + t?)u,dtdt
00

te[0,1]

tt tt
U = fj(l + t?)uydtdt = j f(l + t2)dtdt
00 00

atn=1

atn=2

o\n—r

1 7 1
— 44" 64— .8
t +360t +672t

t t
Uz = ff(l + t?)u,dtdt
00

t t
1 7 1
=ff(1+t2)<—t4+—t6+—t8)dtdt
00

24 360 672
1 11 211 1
— £6 £8 £10 £12
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atn =3

t t
= ff(l + t?)usdtdt
00

tt
1 11 211 1
1 t2 8+ £10 tlz)dtdt
ff( * ) 720 10080 907200 +88704
00

_ 1 /84 1 10 1201 12 4867 14 1 16
40320 36288 119750400 3632428800 21288960
N
u(®) = )y (0)
n=0
where N = 4
= u(t)=1+lt2+1t4’+—t6+ 11 8+ >9_ 10 2551 1, 4867 4,
2 8 48 384 226800 119750400 3632428800
+ __t t16
21288960
Table 1: Comparison of ADM with the exact method

t U, (exact solution) u(t) (ADM) |Error|

0 1 1 0
0.1 1.005012521 1.005012521 0
0.2 1.020201340 1.020201406 6.6 x10®
0.3 1.046027860 1.046029569 3.7257499 x10”
0.4 1.083287068 1.083304133 1.7065 x107
0.5 1.133148453 1.133250178 1.01725 x10™
0.6 1.197217363 1.197654760 1.79473004 x10™
0.7 1.277621313 1.279122548 1.501235 x10°
0.8 1.377127764 1.381496762 4.368998 x10°
0.9 1.499302500 1.510512318 1.1209818 x10™

1 1.648721271 1.674761997 2.6040726 x10

3.2 Example 2

Consider the linear IVP [6]:

with exact solution u, = cost

"o o_

Starting with an initial approximation,

u(0)=1,u'(0)=0




u0=1

and noting that

—u,dtdt

Un+1

Il
O\:ﬁ
O\)m

we have atn = 0
tt
" :ff ” tdt—ff( 1) dtdt
00

:—11:2

atn=1
£t
:ff u,dtdt = — ff dtdt
00
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24t
atn =2
- tt
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1
_ ' 6
720t
atn =3
tt tt
= - = 20 6
w ff usdtdt ff720t dedt
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atn =4

tt
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N

~3628800°
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w(®) = )y (0)

n=0
where N =5
— 1 2 1 4 1 6 1 8 1 10
= wO =1ttt =t + 10320°  3628800°
Table 2: Comparison of ADM with the exact method
t U, (exact solution) u(t) (ADM) |Error]|
0 1 1 0
0.1 0.9950041653 0.9950041653 0
0.2 0.9800665778 0.9800665779 1x10™
0.3 0.9553364891 0.9553364891 0
0.4 0.9210609940 0.9210609941 1x10™
0.5 0.8775825619 0.8775825619 0
0.6 0.8253356149 0.8253356149 0
0.7 0.7648421873 0.7648421873 0
0.8 0.6967067093 0.6967067092 1x10™
0.9 0.6216099683 0.6216099677 6x10™°
1 0.5403023059 0.5403023038 2.1x10°

3.3 Example 3

Consider the nonlinear IVP [6]:

Integrating the source term which satisfies the given condition we have the initial approximation

and noting also that

where

u' =t?+u?,

u(0) =0

t
1
u0=ft2=§t3
0

t
Uny1 = J.An
0
Ay =uj
Al = 2u0u1
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AZ = u% + ZuOuZ
Az = 2(uu; + ugus)
A4_ = u% + 2(u0u4 + U1U3)

we haveatn =0

atn=1
t t
zf dt—Zf(1t3><1 7>dt
U, = uO Uuq = 3 63
t t
2
_ 11
=2079°
atn =2
t
— 2
Uz = f (u1 + Z(uo)(uz)) dt
0
t
1 _\? 1 2
= —t7) 2<—t3) (—t11> dt
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0
_ 13
218295
atn =3

t
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0

t
1 2 1 13
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0

_ 8 £19
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N
u(®) = ) (©
n=0



where N = 4

1 1 2 13
= u(t)=§t3+—t7+—t11+ t15 4

63 2079 218295

which coincides with the first five terms of the Taylor series method.
3.4 Example 4
Consider the nonlinear IVP [6]:

u =u+u? u0 =1

Lu=u+u?
where L = L and L7t = [‘dt
dx 0
Operating L™ on (12) and imposing the initial condition gives

u(t) = up + L™ (u + u?)

o)

z U, (t) =ug + L1 Z A,
n=0

n=0

Noting that the initial approximation

and that

t
un+1:fAn' n=0
0

where

_ 2
Ag = ug +uj

1382535

(12)

t19



A1 =Uuq + 2u0u1
A2 = Uy + u% + ZuOuZ
A3 = Ug + 2(u1u2 + u0u3)

Ay = ug + uZ + 2(uguy + uqus)

atn=0
t t t
0 0 0
atn=1
t t t
uz = _I-Al == j-(ul +2u0u1) dt = f(6t) dt: 3t2
0 0 0
atn=2
t t t
2 2 13 3
us = | Ay = | (uy + uf + 2uyuy) dt = (13t)dt=?t
0 0 0
atn=3
t t t
62 31
u4 = ]Ag = j(u3+2(u1u2+uOU3)) dt:f<?t3> dt:?t4
0 0 0
atn =4
t t t
5 251 4 251 s
us = | Ay = | (uy + u5 + 2(uguy + uqug)) dt = <?t )dt=§t
0 0 0
N
w(®) = ) un (©
n=0
where N =5
(t)—1+2t+3t2+13t3+31t4+251t5
= o= 3 6 30

which coincides with the first six terms of the Taylor series method.

10



4. Conclusion

In this paper, the Adomian Decomposition Method for approximating linear and nonlinear Initial Value
Problems is implemented, the numerical solutions of ADM is also compared with the exact solution in
the first and second examples while in the third and fourth examples they are compared with the Taylor

series method.

For the linear IVPs, as seen in Examples 1and 2, the numerical results obtained by using ADM show very
good agreement with the exact solutions, and for the nonlinear IVPs, as seen in Examples 3 and 4 the
results show that better accuracy can be obtained by accommodating more terms in the decomposition
series whereas the Taylor series method suffered from computational difficulties. This makes the ADM
efficient, simpler and faster than the classical method of Taylor series solution of IVPs. It also converges

to the exact solution.
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