On the direct block multistep method for the solution of fourth order ordinary differential
equations
Bola Titilayo Olabode
Department of Mathematical Sciences
Federal University of Technology, Akure, Nigeria.
e-mail: olabodebola@yahoo.com
Abstract

We considered a linear multistep method for the direct solution of fourth order initial value problems of ordinary
differential equations. The approach of collocation approximation is adopted in the derivation of the scheme and
then the scheme is applied as simultaneous integrator to fourth order initial value problems of ordinary differential
equations in non-parallel mode. The method possessed the desirable feature of Runge-Kutta method of being self —
starting and eliminated the use of predictors. Numerical examples are given to ensure the efficiency of the method.
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1. Introduction

In this paper, the higher order initial value problems of ordinary differential equations of the
form:

YW = £ 3, ¥, Y iy (1)
y@=vo, yi(@)=y;,i=11)n—-1, n>4

is considered for step numbers k > 6. Equation (1) can model many physical problems in
elasticity and solid mechanics (with the absence of derivatives on rhs). However, only a limited
number of analytical methods are available for solving directly without first reducing it a system
of first order differential equations, hence, we resort to numerical methods. Conventionally,
equation (1) is solved by first reducing it to an equivalent first—order system and then applying
the various methods available for solving system of first order initial value problems. There are
considerable literatures on the methods of solution to higher order ODEs (see Lambert [1], [2];
Onumanyi et al., [3]; Fatula [4]; Awoyemi and Kayode [5]). These methods have certain
limitations; the computer programs associated with methods are often complicated especially
when incorporating the subroutines to supply the starting values for the methods resulting in

longer computer time and more computational work Jator [6].



Some eminent scholars have proposed several methods for solving second order ODEs directly
without first reducing it to an equivalent first-order system. For instance, Hairer and Wanner [7]
proposed Nystom type methods and stated order conditions for determining the parameters of the
methods. Awoyemi [8] and Kayode [9] proposed and implemented LMMs in a predictor-
corrector mode using the Taylor series algorithm to supply the staring values. Particularly, the
improved Numerov method developed by Kayode [9] for the direct solution of general second
order IVPs given as:

y., =1/h(y,,, -y, +h/24)(f, ,+26f ,+f )h=0 2

order 3, C,=1/45. The idea of this method is good but it has certain setbacks that can be
circumvented: restriction to predictors for y; ,in the right hand side of (2) and starting values

are required. However, the predictors are developed in the same manner as correctors and they
are of lower order to be combined with higher order correctors, thereby reduces the overall
accuracy. Moreover, this approach is more costly to implement, in the sense that the subroutines
are very complicated to write, since they require special techniques for supplying the starting

values and for varying the step-size, which lead to longer computer time and more human effort.

Therefore, this article proposes the development of an order six method which is applied as
simultaneous intergrators to fourth order initial and boundary value problems of ordinary
differential equations. The method is derived through interpolation and collocation in the spirit of

Norsett and Lie [10], it is consistent, zero-stable hence converges.

Moreover, Fatokun and Onumanyi [11] derived second and fourth order two-step discrete finite
difference methods by collocation for the first approximation and combined them with the
Numerov method for a direct application to general second order initial value problem of ODEs.
Furthermore, In Olabode and Yusuph [12], a new block method for special third order ordinary
differential equations was derived. An accurate scheme by block method was also proposed and

applied as simultaneous intergrators to third order ordinary differential equations Olabode [13].



2. The Material and Method

In this section, the interpolation and collocation procedures is adopted to characterize the linear
multistep method that is of interest to us, the right number of interpolation points (u)and the right
number of collocation points (v) are carefully selected.

We approximate the exact solution y(x) by seeking the continuous method y (x) of the form:
OB WHCTNELD AT ©

1= J=
where x €[a,b],and the following notations are introduced. The positive integer k > 4 denotes
the step number of the method (3), which is applied directly to provide solution to (1). So we
seek a solution on a given grid point:
N8 =Xy <X <Xy < Xpyp <ooew < X oo < Xy =D, where 7y is the partition of [a, b] and h =
Xns1-Xn =0, 1, ...... , N is a constant step size of the partition of my. The number of
interpolation points u and the number of distinct collocation points v as chosen to satisfy

4<u<k,and 0<v<k+1, and we construct k-step multistep collocation method of the form
(3) by imposing the following conditions:

y(xn+j):yn+j,j:2,3, ...... u-=1 (4)
gliv(xn+j) = fl’H—j,j 20,1,2 ...... ,V—l (5)

Equation (4) and (5) lead to a system of (u+v) equations and (u+v) unknown coefficients to be
determined. In order to solve this system, we require that the linear k-step methods (3) multistep

be defined by the assumed polynomial basis functions:
u-1 .
a; ()= a,.;p(X);je{23....u-1} (6)
j=2

B;(X) :iﬂ”ﬂ p,(x); ] €{0,1,........ v-1} @)



where the constants «;,, ;and h*B.. i»1=10, 1....u+v—ZL}rare the parameters to be determined

from the(u+v) x (u+v) matrix A, given by

Q70 Qpqeeeee Opy h 4,6)1,0 ----- h 4181,\/—1
U3 Ogq-eeee Q341 h4ﬁ2,o ----- h4182,v—1
M =
au+v,0 au+v,l au+v,u-1 h4ﬁu+v,0 h4ﬂu+v,v—1
(8)
The interpolation/collocation matrix D is also defined as:
po (Xn+2) """"" pu+v—l(xn+2)
pO (Xn+u—1) """"" pu+v—1(xn+u—1)
p(l)v (Xn) """"""" plIJV+v—l (Xn)
D = p(l)v(xn+l) """"" plljv+v—l(xn+l)
pO (Xn+v—1) """" pLiJv+v—1 (Xn+v—1)
)

This system of equations are solved by Gaussian elimination method to obtain the values of
parameters a’s , j = 0, 1, .. which is substituted in approximate solution yields, after some
manipulation yield the new continuous method. In Jator [6], matrix inversion approach was
employed in the determination of unknowing parameters a;. The new six-step LMM with
continuous coefficients obtained is then applied as simultaneous numerical integrators to fourth
order ordinary differential equations (1). The method eliminates the use of predictors by
providing sufficiently accurate simultaneous difference equations from a single continuous

formula and its derivative. Moreover, this method is cheaper to implement, since it is self-



starting and therefore the limitations are circumvented. The continuous method is expressed in

the form:

4609= 22,099, + 3,0 (10)
the coefficients o (x) and g, (x) of (10) are expressed as functions of t = (x—x,,,)/h,

a,(t) = %(—ﬁ +9t® — 26t + 24)

a,(t) = %(?,t3 — 24t* + 57t - 36)

a,(t) = %(-3? 120t — 42t + 24)

as (t) :%(ﬁ — 6t +11t - 6)

4
B, () = 362h8800 (t*° - 25t° + 255t° -1350t" + 3836t° - 5040t° + 6875t° — 4812t°
— 940t +1200)
4
B (t) = 1812400 (-3t + 70t° - 630t® + 2520t - 2058t° -19404t° + 75600t *
—115960t° + 75411t? — 9426t — 6120)
4
B, () = 722760 (3t*°-65t° +513t%  -1494t7 -1428t° +15120t° -148141t> + 370200t°
- 363300t +128592)
4
B (t) = 182440 (-t +20t°  -138t° +288t" +658t° — 2520t° - 20478t°
+132753t? - 228830t +118248)
4
B, () = h (3t'% —55t° +333t° -522t" -1596t° +5040t° - 29963t°
! 725760
+131148t? - 232980t +128592)
4
(t) = h (-3t*° +50t° —540t® + 360t " +1302t° - 3780t° + 7540t*
**7 1814400
-8949t2 + 9870t - 6120)
4
B (t) = 362h8800 (t*° —15t° + 75t° —90t " —364t° +-1008t> —1955t° + 2088t>

1948t +1200) (11)



The discrete scheme of (11) is:

4

Yo — 4yn+5 + 6yn+4 - 4'yn+3‘ t VYoo = h— (_16 1:n+6 +2574 fn+5 +10029 f

15120 ned
+2504f,,, +54f,,, —30f, ,, +5f,).
with order P =8 i.e C,, =—3.373015873/ %" (12)

fo= F (X0 Yn), Foea =T (X ners Yoer), Frwz = £ (X sz, Yiw2), Frea = F (X nas, Yiea),

frea =T (X neay Ynea) s Fres = F (X nes, Yines), Tres = T (X ne6, Ynss)
The first, second and third derivatives of (11) are found, noting that

t=(x—X,,)/h (13)
Evaluating equation (11) at X = X , X = Xp+1and X = Xne6, With the additional equations obtained

from the first, second and third derivative functions yield the following integrators:

4

h
-4 +6 -4 + =——(-16f . +2574f . +10029f
yn+6 yn+5 yn+4 yn+3 yn+2 15120 ( n+6 n+5 n+4

+2504f ., +54f ,—-30f ,+5f)

h4
+4y. . —15y , +20y. . —10y, , =
yn yn+5 yn+4 yn+3 yn+2 15120

+41920f, ,)+20745f , +2370f, , +4f))

h4
+ -4 +6 -4 =
yn+1 yn+5 yn+4 yn+3 yn+2 15120

+9854f, ,+2679f, ,—51f  +5f,)

(25f ., —234f, . +10770f, ,

(5f,., —51f . +2679f ,

13 31 h*
hz, —— +— +114 + 47 =———(-1535f
0 3 yn+5 2 yn+4 yn+3 yn+2 907200 ( n+6
+14418f . -696540f , —2845040f , —1848915f , —435930f , —7658f,)
h4
302400
+140915f , —7286000f, ,, +575180f,  , —322282 f

n+5

hZZ(; + 3yn+5 _1Oyn+4 +11yn+3 - 4yn+2 = (_502 fn+6 +2902 fn+5

+19823f,)

n+l

4

120960
-156920f, ., —55219f,, 1766081, , —36799) (14)

h3z(;'_ Yois 3yn+4 - 3yn+3 +Y, = (1335 fn+6 —9608 fn+5

+10459 f

n+4
Comment 2.1
It is worth to note that the method (12) is the main method that can be implemented in the PC

mode in that case predictors and starting values will be required.



3. Analysis and the Implementation of the method
In this section, we analyze the method for consistency, error constant, zero stability and
convergence. According to Fatunla [4] and Lambert [1], the linear difference operator L is defined

as:

LLy(x);h] =Z[a,-y(X+ i) —h*By" (x+ jh)] (15)

where y(X) is the exact solution to (1) and is assumed to be sufficiently differentiable. We now

invoke the Taylor‘s theorem to obtain
LLy(x);h]=C,y(x) + Cihy'(x) +... +C,h?y @ (x) +0(h**?) (16)

whose coefficients Cq, q = 0,1,.. are constants independent of y(x) and given as:

K
C(,=Z:05j
j=0
k -
C,=2 ia,
-1
1 Kk . [ I
Cq:a Z]qaj—q(q—l)qu ;Bj 17)
L j=1

The order p of the difference operator L[y(x); h] is a unique integer p such that
Cq=0,q=0(1) p+1, Cpso# 0 (Henrici [14]).

In order to analyze the method for zero stability, equations (15) to (17) are written as block method
given by the matrix difference equation. The first-block of LMM for the fourth order initial value
problem (ivp) designated by equation (1) can be expressed by the following matrix difference
equation:

ALy, = AB .y, +h'BO F+ BFyy (18)

where, Vg = (Yner, Yoz, Yn+6)T1Yq-1 = (Yn-s, Yn-4...........,Yn)T
T2 = (Fos, Fodevreon )T, Ty = (Frva, Faa . Fres) "0 =0, 1, ......

and n= 0, 6....and the matrix A°is an identity matrix of dimension 6.



01 -4 6 -4 1 |y y[oo 0o 00 0 Yns
0-10 20 -15 4 0 |y | |00 0 0 0 1 Yo-a
1-4 6 -4 1 0 ||y, (00 0 o0 0 ofYe
0 47 114 31/2-133 0 ||Yms| |0 0 0 0 0 ofYr2!|
0 -4 11 10 3 0 |[[Yes| 0 0 0 o o of”’™
00 -3 3 -1 0 |Wwn/ [0 00O 0 0-1] 4
-1 1 313 3343 429 1 000 0 0 L
504 280 1890 5040 2520 945 3024
237 4149 524 1077  -13 5 || s 000 0 0 L fs
1512 3024 189 1512 840 3024 3780
17 893 4927 893  -17 1 foe 000 0 0 L fo
.h¢||5040 5040 5040 5040 5040 3024 | . 3024 |
-307 89 -11609 -35563 -41087 -14531 (| fou | | 4 0o o o 23829 || fus
181440 5600 15120 11340 20160 30240 453600
161141 28759 -18215 28183 1451 -251 | f..| |00 g o o.19823 || fuo
151200 15120 756 60480 151200 151200 302400
_5519 -55219 -3923 10459 -1201 89 || fms 0000 03679 fs
| 3780 120960 3024 120960 15120 8064 J| ¢ | L 120960 | ¢
(19)

For easy analysis, equation (19) is normalised by multiplying its matrix A° and A’ with the inverse

of A% i.e (A%, The first characteristic polynomial of the improved block method is

p(R) = det[RA’ — A']
1 0 0 O
0 0
1 0

=det| R

O P o o o o
R O O O O O
[ T R o o T

O O O o o o
O O O O O o
O O O O o o
O O O O o o
O O O O o o

O O O o o b~

O O o o b+

0 1
0 0
0 O



RO OO 0 -1
0 RO O 0 -1
00 RO 0 -1
p(R) = =0
00 0 R 0 -1 (20)
00 00 R -1
0 00 0 0 R-1
p(R)=R°*(R-1)=0=

which implies zero-stability. The block method is also consistent, as it has the order p>1. Hence,

the convergence of the method is asserted Henrici [14].

Numerical Experiments and Results
This section deals with the numerical experiments and results using the algorithm proposed for

fourth order initial value problems.

1. yivz%; 0<x<1
_ 4 _M " _ m __3¢(X)
y(0)=0, y'(0)= 13 ,y'(0)=0,y (0)——8
p(X)=E=1=1

Theoretical solution

y(X) = %:3()(&4 -3x®+x)

TABLE 1: Accuracy comparison of the direct solution of problem (1), with the result obtained
when the same problem (1) is reduced to the first order system, h=10.1

X Exact solution | LMM of Errors of the Errors
y(X) order 6 direct solution of | (when
y-computed problem (1) reduced to
first order
system)
0.1 | 0.002025000 | 0.002020835 4.1650000E-07 | 1.6171E-06
0.2 | 0.003733333 | 0.003666721 6.6612333E-06 | 5.4933E-06
0.3 | 0.004900000 | 0.004562906 3.3709400E-05 | 1.0129E-05
0.4] | 0.0054000000 0.00433499 1.0650100E-05 | 1.4023E-05
0.5 | 0.005208333 | 0.002609012 2.5993213E-05 | 1.5677E-05
0.6 | 0.004400000 | -0.000988581 5.3885810E-05 | 1.3590E-05
0.7 | 0.003150000 | -0.006831112 9.9811120E-04 | 6.2619E-06
0.8 | 0.001733333 | -0.015292039 1.7025372E-04 | 7.8069E-06
0.9 | 0.0005250000 -0.02674555 2.7270550E-03 | 3.0116E-05




Table 1 shows that, the maximum absolute error of the new linear multistep method for
the direct solution of the problem (1) is 4.1650000E-07 while the maximum absolute error
when the same problem (1) is reduced to system of first order is 1.6171000E-06 which
implies that they compare favorably.

2. y@ =9y +x
y(0)=0, y'(1)=0, y"(0)=0, y"())=0

TABLE 2: The approximate solution of problem (2), withh =0.1

X y-computed LMM of order 6
y-computed
0.1 0.0832783 8.327830E-02
0.2 0.0164637 1.646370E-02
0.3 0.0242184 2.421840E-02
0.4] 0.0314076 3.140760E-02
0.5 0.0378557 3.785570E-02
0.6 0.433984 4.339840E-01
0.7 0.047888 4.788800E-02
0.8 0.0511976 51.19760E-02
0.9 0.0532275 5.322750E-02
1 0.0539119 5.391190E-02
5. Conclusion

The new block linear multistep method was proposed for the direct solution of fourth order
initial value problems of ordinary differential equations eliminated the use of predictor and it is
also more accurate and faster than the conventional (step-step) integration procedures.
Furthermore, the direct method is more advantageous than the traditional reduction method to the
first order system in the sense that it is cost effective and attractive from computational point of
view.
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