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Abstract 

We considered a linear multistep method for the direct solution of  fourth order initial value problems of ordinary 

differential equations. The approach of collocation approximation is adopted in the derivation of the scheme and 

then the scheme is applied as simultaneous integrator to fourth order initial value problems of ordinary differential 

equations in non-parallel mode. The method possessed the desirable feature of Runge-Kutta method of being self –

starting and eliminated the use of predictors. Numerical examples are given to ensure the efficiency of the method. 
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1. Introduction 

In this paper, the higher order initial value problems of ordinary differential equations of the 

form: 

 

                                             ,                                           (1)  

y(a) = y0,                           

 is considered for step numbers k ≥ 6. Equation (1) can model many physical problems in 

elasticity and solid mechanics (with the absence of derivatives on rhs). However, only a limited 

number of analytical methods are available for solving directly without first reducing it a system 

of first order differential equations, hence, we resort to numerical methods. Conventionally, 

equation (1) is solved by first reducing it to an equivalent first–order system and then applying 

the various methods available for solving system of first order initial value problems. There are 

considerable literatures on the methods of solution to higher order ODEs (see Lambert [1], [2]; 

Onumanyi et al., [3]; Fatula [4]; Awoyemi and Kayode [5]). These methods have certain 

limitations; the computer programs associated with methods are often complicated especially 

when incorporating the subroutines to supply the starting values for the methods resulting in 

longer computer time and more computational work Jator [6]. 



Some eminent scholars have proposed several methods for solving second order ODEs directly 

without first reducing it to an equivalent first-order system. For instance, Hairer and Wanner [7] 

proposed Nystom type methods and stated order conditions for determining the parameters of the 

methods. Awoyemi [8] and Kayode [9] proposed and implemented LMMs in a predictor-

corrector mode using the Taylor series algorithm to supply the staring values. Particularly, the 

improved Numerov method developed by Kayode [9] for the direct solution of general second 

order IVPs given as: 

(2)                                                   0),269)(24/(/1 1212 
 hfffhyyhy nnnnnn  

45/1C   3,order 5  . The idea of this method is good but it has certain setbacks that can be 

circumvented: restriction to predictors for 2

ny in the right hand side of (2) and starting values 

are required. However, the predictors are developed in the same manner as correctors and they 

are of lower order to be combined with higher order correctors, thereby reduces the overall 

accuracy. Moreover, this approach is more costly to implement, in the sense that the subroutines 

are very complicated to write, since they require special techniques for supplying the starting 

values and for varying the step-size, which lead to longer computer time and more human effort.  

 

Therefore, this article proposes the development of an order six method which is applied as 

simultaneous intergrators to fourth order initial and boundary value problems of ordinary 

differential equations. The method is derived through interpolation and collocation in the spirit of 

Norsett and Lie [10], it is consistent, zero-stable hence converges. 

 

Moreover, Fatokun and Onumanyi [11] derived second and fourth order two-step discrete finite 

difference methods by collocation for the first approximation and combined them with the 

Numerov method for a direct application to general second order initial value problem of ODEs. 

Furthermore, In Olabode and Yusuph [12], a new block method for special third order ordinary 

differential equations was derived. An accurate scheme by block method was also proposed and 

applied as simultaneous intergrators to third order ordinary differential equations Olabode [13].  

  



2. The Material and Method 

In this section, the interpolation and collocation procedures is adopted to characterize the linear 

multistep method that is of interest to us, the right number of interpolation points (u)and the right 

number of collocation points (v) are carefully selected. 

We approximate the exact solution y(x) by seeking the continuous method y (x) of the form:
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where ],[ bax ,and the following notations are introduced. The positive integer 4k denotes 

the step number of the method (3), which is applied directly to provide solution to (1). So we 

seek a solution on a given grid point:  

πN : ,........... 110 bxxxxxxa Nknnn   where πN is the partition of [a, b] and h = 

xn+1-xn , n = 0, 1, ……, N  is a constant step size of the partition of πN. The number of 

interpolation points u and the number of distinct collocation points v as chosen to satisfy

1kv0  and ,4  ku , and we construct k-step multistep collocation method of the form 

(3) by imposing the following conditions: 
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Equation (4) and (5) lead to a system of (u+v) equations and (u+v) unknown coefficients to be 

determined. In order to solve this system, we require that the linear k-step methods (3) multistep 

be defined by the assumed polynomial basis functions: 
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where the constants }1,.....1  ,0{, ,1

4

,1  vujhand jiji  are the parameters to be determined 

from the(u+v) x (u+v) matrix A, given by 
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The interpolation/collocation matrix D is also defined as: 
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This system of equations are solved by Gaussian elimination method to obtain the values of 

parameters aj’s , j = 0, 1, .. which is substituted in approximate solution yields, after some 

manipulation yield the new continuous method. In Jator [6], matrix inversion approach was 

employed in the determination of unknowing parameters aj. The new six-step LMM with 

continuous coefficients obtained is then applied as simultaneous numerical integrators to fourth 

order  ordinary differential equations (1). The method eliminates the use of predictors by 

providing sufficiently accurate simultaneous difference equations from a single continuous 

formula and its derivative. Moreover, this method is cheaper to implement, since it is self-



starting and therefore the limitations are circumvented. The continuous method is expressed in 

the form: 
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the coefficients )(  )( xandx jj  of (10) are expressed as functions of hxxt n /)( 1 ,  
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The discrete scheme of (11) is: 
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fn= f (x n, yn),  fn+1 = f (x n+1, yn+1), fn+2 = f (x n+2, yn+2),  fn+3 = f (x n+3, yn+3),  

fn+4 = f (x n+4, yn+4) , fn+5 = f (x n+5, yn+5), fn+6 = f (x n+6, yn+6) 

 The first, second and third derivatives of (11) are found, noting that 

hxxt n /)( 1
                                   

                                                     (13) 

 Evaluating equation (11) at x = xn , x = xn+1and x = xn+6, with the additional equations  obtained 

from the first, second and third derivative functions yield the following integrators: 
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Comment 2.1 

It is worth to note that the method (12) is the main method that can be implemented in the PC 

mode in that case predictors and starting values will be required. 



3. Analysis and the Implementation of the method 

In this section, we analyze the method for consistency, error constant, zero stability and 

convergence. According to Fatunla [4] and Lambert [1], the linear difference operator L is defined 

as: 
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where y(x) is the exact solution to (1) and is assumed to be sufficiently differentiable. We now 

invoke the Taylor‘s theorem to obtain  
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whose coefficients Cq, q = 0,1,..  are constants independent of y(x) and given as: 
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The order p of the difference operator L[y(x); h] is a unique integer p such that  

Cq = 0, q = 0(1) p+1, CP+2 0 (Henrici [14]). 

In order to analyze the method for zero stability, equations (15) to (17) are written as block method 

given by the matrix difference equation. The first-block of LMM for the fourth order initial value 

problem (ivp) designated by equation (1) can be expressed by the following matrix difference 

equation: 

 A
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. yq = A
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.yq-1 + h
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B
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   where, yq = (yn+1, yn+2……..,yn+6)
T
,yq-1 = (yn-5, yn-4.....……,yn)

T 

fq-1 = (fn-5, fn-4,......., fn)
T
 , fq = (fn+1, fn+2,…..., fn+6.)

T, 
q = 0, 1, ....... 

and n= 0, 6….and the matrix A
o 
is an identity matrix of dimension 6. 
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For easy analysis, equation (19) is normalised by multiplying its matrix A
0
 and A

1 
with the inverse 

of A
0  

i.e (A
0
)
-1

. The first characteristic polynomial of the improved block method is  
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which implies zero-stability. The block method is also consistent, as it has the order p>1. Hence,   

the convergence of the method is asserted Henrici [14]. 

 

4. Numerical Experiments and Results 

This section deals with the numerical experiments and results using the algorithm proposed for 

fourth order initial value problems. 

)32(
48

)(
y(x)                

solution lTheoretica                

1)(                

8

)(3
)0(,0(0)y ,

48

)(
 (0)y  , 0)0(               

10      ;
)(

            .1

34 xxx
x

IEx

x
y

x
y

x
EI

xQ
y iv
















 

TABLE 1: Accuracy comparison of the direct solution of problem (1), with the result obtained 

when the same problem (1) is reduced to the first order system, h= 0.1 

 

 

 

 

 

 

 

 

 

X  Exact solution 

y(x)             

 LMM of 

order 6 

y-computed 

Errors of the 

direct solution of 

problem (1) 

Errors  

(when 

reduced to 

first order 

system)  

0.1 0.002025000 0.002020835 4.1650000E-07 1.6171E-06 

0.2 0.003733333 0.003666721 6.6612333E-06 5.4933E-06 

0.3 0.004900000 0.004562906 3.3709400E-05 1.0129E-05 

0.4| 0.0054000000 0.00433499 1.0650100E-05 1.4023E-05 

0.5 0.005208333 0.002609012 2.5993213E-05 1.5677E-05 

0.6 0.004400000 -0.000988581 5.3885810E-05 1.3590E-05 

0.7 0.003150000 -0.006831112 9.9811120E-04 6.2619E-06 

0.8 0.001733333 -0.015292039 1.7025372E-04 7.8069E-06 

0.9 0.0005250000 -0.02674555 2.7270550E-03 3.0116E-05 



Table 1 shows that, the maximum absolute error of the new linear multistep method for 

the direct solution of the problem (1) is 4.1650000E-07 while the maximum absolute error 

when the same problem (1) is reduced to system of first order is 1.6171000E-06  which 

implies that they compare favorably. 
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TABLE 2: The approximate solution of problem (2), with h = 0.1 

  

 

 

 

 

 

 

 

 

5. Conclusion 

The new block linear multistep method was proposed for the direct solution of fourth order 

initial value problems of ordinary differential equations eliminated the use of predictor and it is 

also more accurate and faster than the conventional (step-step) integration procedures. 

Furthermore, the direct method is more advantageous than the traditional reduction method to the 

first order system in the sense that it is cost effective and attractive from computational point of 

view. 
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