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Abstract 

We study the stability of a multi-level scheme for the solution of wave 

equation. The function u, is the wave amplitude which depends on the x and t 

variables. The function u, as seen in this work is an admissible function, hence, 

it can be expanded using the Taylor series. A practical result for stability criteria 

for the multi-level difference scheme for the solution of wave equation is given 

in a proposition due to Von Neumann. This result shows that the multi-level 

difference scheme is stable or unconditional stable. 

 

 

 

Key words: Stability, multi-level difference scheme, Von Neuman, difference 

equation, central difference scheme and symmetric matrix. 

   



 2 

INTRODUCTION  

We consider the wave equation  
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u(0,t) = u(1,t) = 0 and u(x,0) = 0       (1.1) 

where u is wave amplitude and c
2
 = 1 is the speed of wave (see Dass [1] and 

Tejumola [2]). 

We consider also a two level scheme  
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which is usually called the central difference scheme [3]. The function u is 

admissible, it takes values in suitable sub-spaces of the space of definition of the 

problem under consideration [4]. Hence, the Taylor series expansion is applied 

to it [5] and satisfies equation (1.1) we are suppose to solve. A practical result 

for stability criteria for multi-level difference scheme for the solution of wave 

equation is given in a proposition due to Von Neumann. 

Proposition (Von Neumann, [6]): If (∆t,k) is an eigenvalue of the amplification 

matrix G (∆t,k) of a difference scheme, then the necessary and sufficient 

condition for stability are  

i.  ≤  0 (∆t) 

ii. G(∆t,k) is a symmetric matrix  

iii. The scheme involves only one depended variable.   
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However, the Von Neumann condition is necessary and sufficient for all level 

scheme for the wave equation irrespective of the number of dependent variable 

involve [7].The condition obtained by this method is more accurate than the 

Jacobi’s iteration method or the Gauss-Seidel method [8].   

2 Main Result  

We consider the difference scheme  
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Substituting in (2.3) we have  
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]1[1 22 xikxik ee     

)(1 22 xikxik ee          (2.5) 

 xk cos22   
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Substituting in (2.5) gives  

0)1(2)1( 2   c        (2.6) 

where c = cosk∆x 
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The stability condition is  

,1  

which implies that, for the equation  

x
2
 – 2bx+c = 0 

(i) c ≤ 1,  

(ii)  b ≤ 1 
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that is, we must have  
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The scheme is always stable or unconditional stable. 

3. Conclusion  

The Von Neumann condition used in this work shows that the multi-level 

differences scheme is stable. 
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