#### SECOND DERIVATIVE PARALLEL MULTI-BLOCK METHODS FOR STIFF ODEs

## By

# K.O. MUKA<sup>1</sup> and M.N.O. IKHILE<sup>2</sup>

#### **Department of Mathematics, University of Benin**

### PMB 1154, Benin City, Nigeria

## E-mail: kingsleymuk@yahoo.com<sup>1</sup> and mnoikhilo@yahoo.com<sup>2</sup>

#### Abstract

A general theoretical background for second derivative multi–block methods and off-node form of block method developed in a previous study are presented herein. The proposed off-node block methods are L-stable for  $k \le 7$ . Numerical results are included to justify their application on stiff IVPs in ODEs.

Keywords: Block methods, Off-node methods, Stiff IVPs.

#### 1. INTRODUCTION

Numerical methods for integrating stiff initial value problems (IVPs) in ordinary differential equations (ODEs) of the form

$$\mathbf{y}' = \mathbf{f}(\mathbf{y}(\mathbf{x})) \quad , \mathbf{f} : \mathbf{R}^n \to \mathbf{R}^n, \, \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0 \tag{1}$$

on parallel computers are currently receiving huge research interest. Among these methods are the parallel block methods developed in [1-7]. Chu and Hamilton [1] defined r-block k-point block methods as:

$$Y_{m} = \sum_{i=1}^{r} A_{i} Y_{m-i} + h \sum_{i=0}^{r} B_{i} F_{m-i}$$
(2)

where  $A_i, B_i, i = 0, 1, ..., r$  are k x k matrices,  $Y_m, F_m$  are vectors of the solution and its derivatives respectively (see [1]). If k =1, then (2) is the classical linear multi-step method (LMM) of r-step method.

Sommeijer et al [6] developed methods of the form (2) for r=1, such methods are called Oneblock k-point methods. Classical r-step methods for integrating stiff IVP (1) are necessarily implicit. However, Dahlquist order barrier places severe restriction on the order an A-stable LMM can attain (see [8-11]). In [12], Dahlquist order barrier is circumvented by developing LMMs that incorporate the second derivative component ( $y'' = \frac{d^2y}{dx^2}$ ) directly into their formulas. Methods whose formulas contain second derivative components are called second derivative LMM ([2], [3], [9], [10], [11], [12]). In [12], the second derivative LMM is thus given as:

$$\mathbf{y}_{n+1} = \sum_{i=1}^{r} a_i y_{n+1-i} + h \sum_{i=0}^{r} b_i f_{n+1-i} + h^2 \sum_{i=0}^{r} d_i f'_{n+1-i}.$$
(3)

In this paper a straight forward generalization of (3) to multi-block methods is given. This paper is organized as follows: section 2 is on the theory of second derivative multi-block methods for the IVP (1); Off-node second derivative parallel block backward differentiation type formulas are developed in Section 3. Section 4, is on the stability of off-node second derivative parallel block backward differentiation type formulas. Numerical experiment is performed in section 5, in section 6, is the conclusion.

#### 2. Theory of Second Derivative Multi-Block Methods.

Let  $y_{n+i}$  denote the numerical approximate to the solution value  $y(x_{n+i})$  of (1). By introducing the k-vectors

$$Y_{m-i} = \begin{pmatrix} y_{n-ik+c_1} \\ y_{n-ik+c_2} \\ \vdots \\ y_{n-k(i-c_k)} \end{pmatrix}, \ F(Y_{m-i}) = \begin{pmatrix} f_{n-ik+c_1} \\ f_{n-ik+c_2} \\ \vdots \\ f_{n-k(i-c_k)} \end{pmatrix} \text{ and } F'(Y_{m-i}) = \begin{pmatrix} f'_{n-ik+c_1} \\ f'_{n-ik+c_2} \\ \vdots \\ f'_{n-ik+c_2} \\ \vdots \\ f'_{n-k(i-c_k)} \end{pmatrix},$$
(4a)

 $i = 0,1,2,\dots,r$ . The (3) can be generalized into the second derivative r-block k–point block. The block formalism of (3) is given by the finite difference equation

$$\sum_{i=0}^{r} A_{i} Y_{m-i} = h \sum_{i=0}^{r} B_{i} F_{m-i} + h^{2} \sum_{i=0}^{r} D_{i} F'_{m-i}$$
(4b)

where  $A_i$ ,  $B_i$  and  $D_i$ , i = 0,1,...,r are carefully chosen k-by-k matrices.  $A_0$  is an k-by-k unit matrix and h the step-length. The second derivative r-block, k-point method (4b) is explicit; if the coefficient matrices  $B_0$  and  $D_0$ , are null or strictly lower triangular otherwise it is implicit.

## **DEFINITION 1**

Method (4b) is said to be parallel if the matrices  $B_0$  and  $D_0$  are diagonal matrices.

### **DEFINITION 2**

Let  $Z_{m-i} = (y(x_{n-ik+1}) \quad y(x_{n-ik+2}) \quad \cdots \quad y(x_{n-k(i-1)}))^T$ ,  $i = 0, 1, \dots, r$ , be the theoretical solution to

(1). The local truncation error (l.t.e) of (4b) is given by the vector  $E_m$ :

$$\mathbf{E}_{m} = \mathbf{Z}_{m} - \sum_{i=1}^{r} A_{i} Y_{m-i} - h \sum_{i=0}^{r} B_{i} F_{m-i} - h^{2} \sum_{i=0}^{r} D_{i} F'_{m-i}$$
(5)

#### **DEFINITION 3**

The second derivative block method (4b) has error order  $p \ge 1$  provided there exist a constant C such that the local truncation error  $E_m$  satisfies:

$$\left\| \mathbb{E}_{m} \right\| = Ch^{p+1} Y^{(p+1)}(x_{n}^{*}) + O(h^{p+2}), \quad x_{n} \le x^{*} \le x_{n+1}$$
(6)

where  $\|.\|$  may be the maximum norm, the C is called the error constant of (4b).

#### **DEFINITION 4**

The second derivative block method (4b) is zero stable if the roots  $R_j$ , j = 1, 2, ..., r of the first characteristics polynomial

$$\rho(R) = \det\left(\sum_{i=1}^{r} A_i R^{r-i}\right) = 0 \tag{7}$$

satisfies  $|R_j| \le 1$ , with  $|R_j| = 1$  is simple.

When (4b) is applied to the test equation

$$y' = \lambda y, \text{ with } \operatorname{Re}(\lambda) < 0$$
 (8)

yields the characteristic equation

$$\pi(\mathbf{R},\mu) = \det(\sum_{i=0}^{r} A_i R^{r-i} - \mu \sum_{i=0}^{r} B_i R^{r-i} - \mu^2 \sum_{i=0}^{r} D_i R^{r-i}) = 0$$
(9a)

where  $\mu = \lambda h$ . By Setting  $\rho(R) = \sum_{i=0}^{r} A_i R^{r-i}$ ,  $\sigma(R) = \sum_{i=0}^{r} B_i R^{r-i}$  and  $\gamma(R) = \sum_{i=0}^{r} D_i R^{r-i}$ ,

we rewrite (9a) as

$$\pi(R,\mu) = \det(\rho(R) - \mu\sigma(R) - \mu^2\gamma(R)) = 0$$
(9b)

The stability region associated with (4b) is the set

$$Z = \{\mu : all \text{ roots } R_j(\mu); j = 1(1)k \text{ of } (9b) \text{ are such that } |R_j(\mu)| \le 1\}$$

#### **DEFINITION 5**

The second derivative block method (4b) is A–stable if the stability region Z contains the entire left half plane  $C^- = \{\mu \in C; \operatorname{Re}(\mu) < 0\}$ .

### **DEFINITION 6**

The second derivative block method (4b) is L-stable, if it is A-stable and in addition (9b) has vanishing roots as  $\mu \rightarrow -\infty$ .

#### 3. Off-node Block Method.

In [2], second derivative parallel block backward differentiation type formulas (SDBBDF) which is given as:

$$Y_{m} = A_{1}Y_{m-1} + hB_{0}F(Y_{m}) + h^{2}D_{0}F'(Y_{m}),$$
(10)

where  $B_0$ , and  $D_0$  are diagonal matrices and k-vectors as specified in (4a). The SDBBDF (10) is a generalization of one-step second derivative backward differentiation formulas (SDBDF) developed in [10]. In this paper, we present off-node SDBBDF a variant of SDBBDF (10). The  $c_i$ 's in (4a) for SDBBDF (10) are given as  $c_i = i, i = 1(1)k$ ; by specifying the k-vectors as

$$Y_{m-1} = \begin{pmatrix} y_{n-(k-1)} \\ y_{n-(k-2)} \\ \vdots \\ y_n \end{pmatrix}, Y_m = \begin{pmatrix} y_{n+c_1} \\ y_{n+c_2} \\ \vdots \\ y_{n+c_k} \end{pmatrix}, F(Y_m) = \begin{pmatrix} f_{n+c_1} \\ f_{n+c_2} \\ \vdots \\ f_{n+c_k} \end{pmatrix} \text{ and } F'(Y_m) = \begin{pmatrix} f'_{n+c_1} \\ f'_{n+c_2} \\ \vdots \\ f'_{n+c_k} \end{pmatrix}, c_i = \frac{i}{k}, i = 1(1)k;$$
(11)

an off-node variant of SDBBDF (10) is developed. Substituting (11) into (10) and using methods of undetermined coefficients and Taylor's series expansion, elements of  $A_1$ ,  $B_0$ , and  $D_0$  are determined. In what follows, we present coefficient matrices  $A_1$ ,  $B_0$ , and  $D_0$  for proposed offnode SDBBDF for block sizes  $k \le 7$ .

#### **Two Point Block Method**

$$A_{1} = \begin{pmatrix} -\frac{1}{26} & \frac{27}{26} \\ -\frac{1}{7} & \frac{8}{7} \end{pmatrix}, \quad B_{0} = \begin{pmatrix} \frac{6}{13} & 0 \\ 0 & \frac{6}{7} \end{pmatrix}, \quad D_{0} = \begin{pmatrix} -\frac{9}{104} & 0 \\ 0 & -\frac{2}{7} \end{pmatrix}, \quad C_{4} = \begin{pmatrix} \frac{9}{1664} & \frac{1}{21} \end{pmatrix}^{T}, \quad p = 3.$$
(12)

## **Three Point Block Method**

$$A_{1} = \begin{pmatrix} \frac{32}{10665} & -\frac{343}{10665} & \frac{10976}{10665} \\ \frac{125}{7101} & -\frac{1024}{7101} & \frac{8000}{7101} \\ \frac{4}{85} & -\frac{27}{85} & \frac{108}{85} \end{pmatrix}, B_{0} = \begin{pmatrix} \frac{364}{1185} & 0 & 0 \\ 0 & \frac{440}{789} & 0 \\ 0 & 0 & \frac{66}{85} \end{pmatrix}, D_{0} = \begin{pmatrix} -\frac{392}{10665} & 0 & 0 \\ 0 & -\frac{800}{7101} & 0 \\ 0 & 0 & -\frac{18}{85} \end{pmatrix},$$

$$C_5 = \left(\frac{2267}{4483350} \quad \frac{36346}{9436905} \quad \frac{9}{425}\right)^T, \ p = 4$$
(13)

## **Four Point Block Method**

| (       |                                         | 274625                  | 1601613                     | 66733875           |           | (118755 | 0     | 0      | 0)                           |   |
|---------|-----------------------------------------|-------------------------|-----------------------------|--------------------|-----------|---------|-------|--------|------------------------------|---|
|         | 65376512<br>1125                        | 65376512<br>9261        | 65376512<br>42875           | 65376512<br>385875 |           | 510754  | 4620  | 0      | 0                            |   |
| $A_1 =$ | $-\frac{351136}{456533}$                | 351136<br>3472875       |                             | 351136<br>57066625 | $, B_0 =$ | 0       | 10973 | 211365 | 0                            | , |
|         | 46606592                                | 46606592                | 46606592                    | 46606592           |           | 0       | 0     | 364114 | 60                           |   |
|         | $-\frac{9}{415}$                        | $\frac{04}{415}$        | $-\frac{210}{415}$          | $\frac{376}{415}$  |           | 0       | 0     | 0      | $\left(\frac{60}{83}\right)$ |   |
|         |                                         | -                       | -                           | - ,                |           |         |       |        | /                            |   |
|         | $\left(-\frac{342225}{16344128}\right)$ | 0                       | 0                           | 0                  |           |         |       |        |                              |   |
|         | 0                                       | $-\frac{11025}{175569}$ | 0                           | 0                  |           |         |       |        |                              |   |
| $D_0 =$ | 0                                       | 1/5568<br>0             | $-\frac{1334025}{11651648}$ | 0                  |           |         |       |        |                              |   |
|         | 0                                       | 0                       | 0                           | $-\frac{72}{415}$  |           |         |       |        |                              |   |

$$C_6 = \left(\frac{4448925}{33472774144} \quad \frac{25725}{22472704} \quad \frac{102719925}{23862575104} \quad \frac{24}{2075}\right)^T, \ p = 5.$$
(14)

## **Five Point Block Method**

| $A_{1} = \begin{bmatrix} \frac{12019}{1490603125} & -\frac{12019}{74990603125} & \frac{12019}{74990603125} & -\frac{12019}{74990603125} & -\frac{12019}{74990603125} & -\frac{12019}{74990603125} & -\frac{12019}{74990603125} & -\frac{1707777536}{74990603125} & -\frac{19486823371}{74990603125} & \frac{92381986944}{78201353125} & -\frac{19486823371}{78201353125} & \frac{92381986944}{78201353125} & -\frac{19486823371}{78201353125} & \frac{92381986944}{78201353125} & -\frac{19486823371}{78201353125} & -\frac{19208624}{78201353125} & -\frac{19486823371}{78201353125} & \frac{92381986944}{78201353125} & -\frac{10373884375}{78201353125} & -\frac{10373884375}{78201353125} & -\frac{10373884375}{78201353125} & -\frac{10373884375}{78201353125} & -\frac{10373884375}{78201353125} & -\frac{10373884375}{713720578984} & -\frac{10373884375}{10373884375} & -103738$                   | (                       | 144                                                      | 11                                                                                                                                                   | 25                        | 4                    | 000                       | 90                       | 000                        | 1800                 | 0)           |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|---------------------------|--------------------------|----------------------------|----------------------|--------------|-------------------|
| $A_{1} = \begin{bmatrix} \frac{74990603125}{205006464} & \frac{74990603125}{78201353125} & \frac{74990603125}{10373884375} & \frac{74990603125}{10373884375} & \frac{74990603125}{10373884375} & \frac{74990603125}{10373884375} & \frac{74990603125}{78201353125} & \frac{74990603125}{10373884375} & \frac{7499060}{12019} & \frac{7}{12019} & \frac{7}{12019} & \frac{7}{12019} & \frac{7}{12019} & \frac{7}{12019$ | -                       | 12019         12019           60665724         525926016 |                                                                                                                                                      | 12<br>2242                | .019<br>946629       | 12019<br>7533161856       |                          | 1201<br>8074607            | 9<br>7644            |              |                   |
| $B_{0} = \begin{bmatrix} \frac{78201353125}{10373884375} & \frac{78201353125}{10373884375} & \frac{78201353125}{10373884375} & \frac{78201353125}{10373884375} & \frac{78201353125}{13720578984} \\ \frac{144}{12019} & \frac{1125}{12019} & \frac{4000}{12019} & \frac{9000}{12019} & \frac{18000}{12019} \end{bmatrix}$ $B_{0} = \begin{bmatrix} \frac{3736656}{19895065} & 0 & 0 & 0 & 0 \\ 0 & \frac{40982172}{119984965} & 0 & 0 & 0 \\ 0 & 0 & \frac{58792968}{125122165} & 0 & 0 \\ 0 & 0 & 0 & \frac{9662184}{16598215} & 0 \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{bmatrix}$ $D_{0} = \begin{bmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & 0 \\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{bmatrix}$ $C_{7} = \begin{pmatrix} \frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{bmatrix}^{T}, p = 6$ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A –                     | 7499060312<br>205006464                                  | $     \begin{array}{c}       25 \\       4 \\       25 \\       4     \end{array}     $ $       74990 \\       17107 \\       17107 \\       7     $ | 74990603125<br>1710777536 |                      | 74990603125<br>6811962624 |                          | 74990603125<br>19486825371 |                      | 3125<br>6944 |                   |
| $B_{0} = \begin{pmatrix} 10373884375 & 10373884375 & 10373884375 & 10373884375 & 10373884375 \\ \frac{144}{12019} & -\frac{1125}{12019} & \frac{4000}{12019} & -\frac{9000}{12019} & \frac{18000}{12019} \end{pmatrix}$ $B_{0} = \begin{pmatrix} \frac{3736656}{19895065} & 0 & 0 & 0 & 0 \\ 0 & \frac{40982172}{119984965} & 0 & 0 & 0 \\ 0 & 0 & \frac{58792968}{125122165} & 0 & 0 \\ 0 & 0 & 0 & \frac{9662184}{16598215} & 0 \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{pmatrix}$ $D_{0} = \begin{pmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & \frac{8220}{12019} \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{pmatrix}$ $C_{7} = \begin{pmatrix} \frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{pmatrix}^{T}, p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>π</i> <sub>1</sub> – | 7820135312<br>63521199                                   | 25 78201<br>5120                                                                                                                                     | 353125<br>96256           | 78201<br>1920        | 353125<br>081024          | 78201<br>48182           | 353125<br>200576           | 7820135<br>1372057   | 3125<br>8984 |                   |
| $C_{7} = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 1037388437                                               | 10373                                                                                                                                                | 884375<br>25              | 10373                | 884375<br>000             | 10373                    | 884375<br>00               | 1037388<br>1800      | 4375<br>0    |                   |
| $B_{0} = \begin{pmatrix} \frac{3736656}{19895065} & 0 & 0 & 0 & 0 \\ 0 & \frac{40982172}{119984965} & 0 & 0 & 0 \\ 0 & 0 & \frac{58792968}{125122165} & 0 & 0 \\ 0 & 0 & 0 & \frac{9662184}{16598215} & 0 \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{pmatrix}$ $D_{0} = \begin{pmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & 0 \\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{pmatrix}$ $C_{7} = \begin{pmatrix} \frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{pmatrix}^{T}, p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (                       | 12019                                                    | 120                                                                                                                                                  | )19                       | 12                   | 019                       | 120                      | 019                        | 1201                 | 9)           |                   |
| $B_{0} = \begin{bmatrix} -\frac{1003000}{0} & \frac{40982172}{119984965} & 0 & 0 & 0 \\ 0 & 0 & \frac{58792968}{125122165} & 0 & 0 \\ 0 & 0 & 0 & \frac{9662184}{16598215} & 0 \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{bmatrix}$ $D_{0} = \begin{bmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & 0 \\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0 \\ 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{bmatrix}$ $C_{7} = \begin{pmatrix} \frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{bmatrix}^{T}, p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | $\left(\frac{3736656}{19895065}\right)$                  | 0                                                                                                                                                    | 0                         |                      | 0                         | 0                        |                            |                      |              |                   |
| $B_{0} = \begin{bmatrix} 0 & 0 & \frac{58792968}{125122165} & 0 & 0 \\ 0 & 0 & 0 & \frac{9662184}{16598215} & 0 \\ 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{bmatrix}$ $D_{0} = \begin{bmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & 0 \\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0 \\ 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{bmatrix}$ $C_{7} = \left(\frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \right)^{T}, \ p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0                                                        | $\frac{40982172}{119984965}$                                                                                                                         | 0                         |                      | 0                         | 0                        |                            |                      |              |                   |
| $C_{7} = \left(\frac{300529152}{7771509765625} \ \frac{15380205456}{46869126953125} \ \frac{415718941248}{341230919921875} \ \frac{20907548928}{6483677734375} \ \frac{600}{8133}\right)^{T}, p = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $B_0 =$                 | 0                                                        | 0                                                                                                                                                    | 587929<br>125122          | 968<br>165           | 0                         | 0                        |                            |                      |              |                   |
| $ \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{8220}{12019} \end{pmatrix} $ $ D_{0} = \begin{pmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & 0\\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0\\ 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0\\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0\\ 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{pmatrix} $ $ C_{7} = \begin{pmatrix} 300529152 \\ 77771509765625 & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{pmatrix}^{T}, p = 6$ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 0                                                        | 0                                                                                                                                                    | 0                         | $\frac{1}{1}$        | 9662184       6598215     | 0                        |                            |                      |              |                   |
| $D_{0} = \begin{pmatrix} -\frac{6830208}{497376625} & 0 & 0 & 0 & 0 \\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0 \\ 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{pmatrix}$ $C_{7} = \begin{pmatrix} \frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{pmatrix}^{T}, p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 0                                                        | 0                                                                                                                                                    | 0                         |                      | 0                         | $\frac{8220}{12019}$     |                            |                      |              |                   |
| $D_{0} = \begin{pmatrix} 49/3/6625 \\ 0 & -\frac{123370632}{2999624125} & 0 & 0 & 0 \\ 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{pmatrix}$ $C_{7} = \left(\frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133}\right)^{T}, p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | $\left(-\frac{6830208}{40727666}\right)$                 | $\frac{3}{25}$ 0                                                                                                                                     |                           | (                    | )                         | 0                        |                            | 0                    |              |                   |
| $D_{0} = \begin{bmatrix} 0 & 0 & -\frac{231727392}{3128054125} & 0 & 0 \\ 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{bmatrix}$ $C_{7} = \begin{pmatrix} \frac{300529152}{7771509765625} & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{bmatrix}^{T}, p = 6 $ $(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 49737662                                                 | $-\frac{12337}{29996}$                                                                                                                               | 20632<br>24125            | (                    | )                         | 0                        |                            | 0                    |              |                   |
| $\begin{pmatrix} 0 & 0 & 0 & -\frac{45849888}{414955375} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{pmatrix}$ $C_{7} = \begin{pmatrix} 300529152 \\ 7771509765625 & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{pmatrix}^{T}, p = 6 $ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $D_{0} =$               | 0                                                        | 0                                                                                                                                                    |                           | $-\frac{2317}{3128}$ | 27392<br>054125           | 0                        |                            | 0                    |              |                   |
| $\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{1800}{12019} \end{pmatrix}$ $C_{7} = \begin{pmatrix} 300529152 \\ 7771509765625 & \frac{15380205456}{46869126953125} & \frac{415718941248}{341230919921875} & \frac{20907548928}{6483677734375} & \frac{600}{84133} \end{pmatrix}^{T}, p = 6$ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 0                                                        | 0                                                                                                                                                    |                           | (                    | ) -                       | $-\frac{458498}{414955}$ | 888<br>5375                | 0                    |              |                   |
| $C_{7} = \left(\frac{300529152}{7771509765625}  \frac{15380205456}{46869126953125}  \frac{415718941248}{341230919921875}  \frac{20907548928}{6483677734375}  \frac{600}{84133}\right)^{T}, \ p = 6$ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | 0                                                        | 0                                                                                                                                                    |                           | (                    | )                         | 0                        | _                          | $\frac{1800}{12019}$ |              |                   |
| $(7771509765625 \ 46869126953125 \ 341230919921875 \ 6483677734375 \ 84133)^{11}$ (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_{7} =$               | (3005291                                                 | 52 153                                                                                                                                               | 8020545                   | 6                    | 41571894                  | 41248                    | 20907                      | 7548928              | 600          | $p^{T}$ , $p = 6$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                       | (777150976                                               | 5625 46869                                                                                                                                           | 91269531                  | 25 3                 | 41230919                  | 921875                   | 648367                     | 7734375              | 84133)       | (15)              |

## **Six Point Block Method**

| (                    | 16152323403125                    | 15398203                                                           | 37280799                    | 350775525953                    | 125                   | 10951157635                      | 46875                      | 7014487849890625                    | 481193866502496875)                 |
|----------------------|-----------------------------------|--------------------------------------------------------------------|-----------------------------|---------------------------------|-----------------------|----------------------------------|----------------------------|-------------------------------------|-------------------------------------|
|                      | 47580588884167142<br>18839275     | 4 475805888<br>1756                                                |                             | 237902944420835712<br>771656704 |                       | 237902944420835712<br>2249728000 |                            | 475805888841671424<br>6028568000    | 475805888841671424<br>77165670400   |
| $A_1 =$              | 72771950421<br>6251175            | 72771<br>5706                                                      | 950421<br>66625             | 72771950421<br>121287375        |                       | 72771950421<br>332812557         |                            | 72771950421<br>1540798875           | 72771950421<br>8320313925           |
|                      | 7253380864<br>2921811200          | 53380864         7253380864           21811200         26156812000 |                             | 3626690432<br>107850176000      |                       | 3626690432<br>280368328625       |                            | 7253380864<br>574194337024          | 7253380864<br>1794357303200         |
|                      | 1415916119601<br>1940449395472489 | 141591<br>170562072                                                | 6119601<br>271901875        | 141591611960<br>34189515834175  | 01<br>5625 8          | 1415916119<br>46700262882        | 9601<br>299375             | 1415916119601<br>312534815292573125 | 1415916119601<br>665574142647063727 |
|                      | 469116106139167488<br>100         | 8 469116106<br>80                                                  | 5139167488<br>54            | 23455805306958<br>3375          | 33744 2               | 34558053069<br>8000              | 583744                     | 469116106139167488<br>13500         | 469116106139167488<br>21600         |
| l                    | - 13489                           | 134                                                                | 489                         | 13489                           |                       | 13489                            |                            | - 13489                             | 13489                               |
|                      |                                   |                                                                    |                             |                                 |                       |                                  |                            |                                     |                                     |
|                      | ( 402399852400                    | 0                                                                  | 0                           | 0                               |                       | 0                                | 0)                         |                                     |                                     |
|                      | 2549542871451                     | 0                                                                  | 0                           | 0                               |                       | 0                                | 0                          |                                     |                                     |
|                      | 0                                 | $\frac{28836080}{99824349}$                                        | 0                           | 0                               |                       | 0                                | 0                          |                                     |                                     |
| מ                    | 0                                 | 0                                                                  | $\frac{11275110}{28333519}$ | 0                               |                       | 0                                | 0                          |                                     |                                     |
| $\boldsymbol{B}_0 =$ | 0                                 | 0                                                                  | 0                           | $\frac{956041240}{1942271769}$  |                       | 0                                | 0                          |                                     |                                     |
|                      | 0                                 | 0                                                                  | 0                           | 0                               | $\frac{14492}{25136}$ | 28745580                         | 0                          |                                     |                                     |
|                      | 0                                 | 0                                                                  | 0                           | 0                               | 0                     | 0                                | $\frac{1260}{1927}\right)$ |                                     |                                     |

| (       | 1795533000625      | 0                             | 0                             | 0                             | 0                              | 0                         | )      |                       |
|---------|--------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------|--------|-----------------------|
|         | 183567086744472    | 0                             | 0                             | 0                             | 0                              | 0                         |        |                       |
|         | 0                  | $-\frac{26499200}{898419141}$ | 0                             | 0                             | 0                              | 0                         |        |                       |
|         | 0                  | 0                             | $-\frac{12006225}{226668152}$ | 0                             | 0                              | 0                         |        |                       |
| $D_0 =$ | 0                  | 0                             | 0                             | $-\frac{13707848}{174804459}$ | $\frac{00}{021}$ 0             | 0                         |        |                       |
|         | 0                  | 0                             | 0                             | 0                             | $-\frac{190577212}{180986152}$ | $\frac{215225}{059864}$ 0 |        |                       |
|         | 0                  | 0                             | 0                             | 0                             | 0                              | $-\frac{1800}{13489}$     |        |                       |
| C.      | =(                 | 125 6889                      | 979200 3                      | 96205425                      | 128168378800                   | 118852525472689           | 95125  | $(450)^{T}$ , $P = 7$ |
| 0       | (49331554555104493 | 324032 589452                 | 27984101 928                  | 3432750592 1                  | 14689205687681                 | 4863795788450888          | 515584 | 94423                 |

(16)

## **Seven Point Block Method**

|                         | ( 50484527596800                            | 516187414562600                             | 2468658002976000                            | 7539206115024000                             |  |  |
|-------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|--|--|
|                         | 3979138943535030331<br>239615515828800      | - 3979138943535030331<br>2417792600678400   | 3979138943535030331<br>11339671166866944    | 3979138943535030331<br>33552080381952000     |  |  |
|                         | 2433789106808380069<br>128499849241216      | - 2433789106808380069<br>1280385124884000   | 2433789106808380069<br>5895848794320000     | 2433789106808380069<br>16940898093324375     |  |  |
| Δ —                     | 386983472658061993<br>9095453452800000      | 386983472658061993<br>89547874099200000     | 386983472658061993<br>405265071387515625    | 386983472658061993<br>1133203273320628224    |  |  |
| <i>π</i> <sub>1</sub> – | 11310800211882887401<br>5776455114144000    | 11310800211882887401<br>56224584310853673   | 11310800211882887401<br>250325110324640000  | 11310800211882887401<br>68244071383224000    |  |  |
|                         | 3544427205628291423<br>13558009322803725    | 3544427205628291423<br>130532699789107200   | 3544427205628291423<br>572234645466432000   | - 3544427205628291423<br>1523555725273088000 |  |  |
|                         | 4589917074183198541<br>3600                 | 4589917074183198541<br>34300                | 4589917074183198541<br>148176               | 4589917074183198541<br>385875                |  |  |
|                         | 726301                                      | 726301                                      | 726301                                      | 726301                                       |  |  |
|                         | 17839437047283456                           | 47037578152016925                           | 4013873335638777600                         |                                              |  |  |
|                         | 3979138943535030331<br>74748808961281125    | 3979138943535030331<br>167995128398028800   | 3979138943535030331<br>2551426012545062400  |                                              |  |  |
|                         | 2433789106808380069<br>35750708616240000    | 2433789106808380069<br>70257292572634848    | 2433789106808380069<br>433686991189104000   |                                              |  |  |
|                         | 386983472658061993<br>2277044900416000000   | 386983472658061993<br>3990901835980800000   | 386983472658061993<br>13833047770027200000  |                                              |  |  |
|                         | 11310800211882887401<br>1311551755319520000 | 11310800211882887401<br>2082392011513099000 | 11310800211882887401<br>4797831194526180096 |                                              |  |  |
|                         | 3544427205628291423<br>2811388813176580416  | 3544427205628291423<br>4094876741995929600  | 3544427205628291423<br>6941700773275507200  |                                              |  |  |
|                         | 4589917074183198541<br>686000               | 4589917074183198541<br>926100               | 4589917074183198541<br>1234800              |                                              |  |  |
|                         | 726301                                      | 726301                                      | 726301                                      |                                              |  |  |
|                         |                                             |                                             |                                             |                                              |  |  |

|         | $\left(\frac{4607507927880}{33822122955019}\right)$ | 0                                          | 0                                        | 0                                              | 0                                         | 0                                       | 0                                    |
|---------|-----------------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------|
|         | 0                                                   | 5192751144240                              | 0                                        | 0                                              | 0                                         | 0                                       | 0                                    |
|         | 0                                                   | 0                                          | $\frac{1140884824680}{3289305244057}$    | 0                                              | 0                                         | 0                                       | 0                                    |
| $B_0 =$ | 0                                                   | 0                                          | 0                                        | <u>41265001720800</u><br><u>96140215487449</u> | 0                                         | 0                                       | 0                                    |
|         | 0                                                   | 0                                          | 0                                        | 0                                              | 15129404638920<br>30127134150127          | 0                                       | 0                                    |
|         | 0                                                   | 0                                          | 0                                        | 0                                              | 0                                         | 22176741684240<br>39013651405309        | 0                                    |
|         | 0                                                   | 0                                          | 0                                        | 0                                              | 0                                         | 0                                       | $\left(\frac{457380}{726301}\right)$ |
| (       | 12102514567200                                      |                                            |                                          |                                                |                                           |                                         |                                      |
|         | $-\frac{12192314367200}{1657284024795931}$          | 0                                          | 0                                        | 0                                              | 0                                         | 0                                       | 0                                    |
|         | 0                                                   | $-\frac{22713260803200}{1013656437654469}$ | 0                                        | 0                                              | 0                                         | 0                                       | 0                                    |
|         | 0                                                   | 0                                          | $-\frac{6496858951200}{161175956958793}$ | - 0                                            | 0                                         | 0                                       | 0                                    |
| $D_0 =$ | 0                                                   | 0                                          | 0                                        | $-\frac{28039014432000}{471087055888500}$      | $\frac{0}{01}$ 0                          | 0                                       | 0                                    |
|         | 0                                                   | 0                                          | 0                                        | 0                                              | $-\frac{11741064912720}{147622957335622}$ | $\frac{0}{23}$ 0                        | 0                                    |
|         | 0                                                   | 0                                          | 0                                        | 0                                              | 0                                         | $-\frac{1915268947488}{19116689188601}$ | $\frac{00}{41}$ 0                    |
|         | 0                                                   | 0                                          | 0                                        | 0                                              | 0                                         | 0                                       | $-\frac{88200}{726301}$              |

 $C_{9} = \left(\begin{array}{c} \frac{55748240772760800}{9553912603427607824731}, \frac{283491779171673600}{5843527645446920545669}, \frac{162632621695914000}{929147317852006845193}, \frac{12296042462246400000}{27157231308730812649801}, \frac{8329568046052396000}{8510169720713527706623}, \frac{20825102319826521600}{11020390895113859696941}, \frac{2450}{726301}\right)^{T} \qquad p = 8.$ 

(17)

#### 4. Stability Analysis of Proposed Off-node Block Methods.

The roots *R* of characteristic polynomial equation  $\rho(R) = \det(I - A_1 R) = 0$ , are eigenvalues of matrix  $A_1$ . Eigenvalues of  $A_1$  for methods with coefficient matrices in (12)-(17) are  $R \le 1$  and eigenvalues with R = 1 being simple. Thus proposed off-node SDBBDF with coefficient matrices in (12)-(17) are zero stable. An A-stable block method of the form (10) is L-stable, see [2]. Therefore, A-stable off-node SDBBDF implies L-stable method. Applying our proposed off-node SDBBDF block methods (12)-(17) to the test equation (8) yield the characteristic polynomial defined by

$$\pi(\mathbf{R},\mu) = \det(IR - A_1 - \mu B_0 R - \mu^2 D_0 R) = 0.$$
(18)

The boundary locus of the characteristics roots for block sizes  $k \le 7$  are shown in figures (1)-(6)



Fig. (1): Stability Region of Off-node SDBBDF (12)



Fig. (2): Stability Region of Off-node SDBBDF (13)



Fig. (3): Stability Region of Off-node SDBBDF (14)



Fig. (4): Stability Region of Off-node SDBBDF (15)



Fig. (5): Stability Region of Off-node SDBBDF (16)



Fig. (6): Stability Region of Off-node SDBBDF (17)

Observe from figures (1)–(6), that the regions of absolute stability for block sizes  $k \le 7$  include the entire left of the complex plane, thus our proposed off-node SDBBDF are A-stable and hence L-stable for block sizes  $k \le 7$ . In [4], construction and prove for L-stable off-node SDBBDF of block size k=8 is shown.

### **5. Numerical Experiments**

In this section, we tested the proposed off-node block size k=2 on the stiff problem (see [13])

$$y' = \begin{pmatrix} -10 & \alpha & 0 & 0 & 0 & 0 \\ -\alpha & -10 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -0.1 \end{pmatrix} y, \quad y(x) = \begin{pmatrix} e^{-10x} (\cos(\alpha x) + \sin(\alpha x)) \\ e^{-10x} (\cos(\alpha x) - \sin(\alpha x)) \\ e^{-4x} \\ e^{-4x} \\ e^{-0.5x} \\ e^{-0.1x} \end{pmatrix}, \quad y(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad 0 \le x \le 3.$$

Using a fixed step-size h=0.01 and inverse Euler's method in [9] to generate starting values. The plots of numerical solution generated by proposed off-node SDBBDF compared with numerical

solutions generated by SDBBDF of block size k=2 and SDBDF of step-size k=2 are shown in figure 7.



Fig. (7): y<sub>1</sub> Component Generated by Off-node SDBBDF, SDBBDF and SDBDF From figure (7), the numerical solution of stiff problem generated by proposed off-node SDBBDF compares favourable with SDBBDF and SDBDF.

### 6. Conclusion

Theory on second derivative multi-block methods is developed, in addition off-node SDBBDF a variant of SDBBDF developed in [2] is proposed. The family of off-node SDBBDF has higher order L-stable methods compared to family of SDBBDF. The numerical result shows that the proposed off-node SDBBDF is suitable for integrating stiff IVPs in ODEs (1).

### References

- Chu, M.T. and Hamilton, H. (1987), Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comp., Vol. 8, pp.342 -535.
- [2] Muka, K. O. and Ikhile, M.N.O. (2009), Second derivative parallel block backward differentiation type formulas for stiff Odes. Journ. Nig. Assc. Of Maths. Physics. Vol. 14, pp. 117 -124.
- [3] Muka, K. O. and Ikhile, M.N.O. (2009), Generalized Enright block methods for stiff Odes. Journ. Nig. Assc. Of Maths. Physics. Vol. 14, pp. 125 -134.
- [4] Muka, K. O. (2011), Second derivative parallel block methods for initial value problems in ordinary differential equations. Ph.D Thesis, Univ. of Benin, Nigeria.
- [5] Sommeijer, B.P; Couzy, W. and Houwen, P.J. (1989), A Stable parallel block methods,
   Report NM R8918, Center for Math. And Comp. Sci., Amsterdam.
- [6] Zarina, B.I., Suleima, M, and Fudzaiah. I (2003), Fully implicit two point block backward differentiation formula for solving first order initial value problems. Science Putra Research bulletin Vol 11(2); pp.14 - 17
- [7] Zarina, B.I., Khairil, I.O. and Mohammed, S. (2007), Variable step block backward differentiation formula for solving first order stiff ODEs, WCE 2 4 July, 2007; pp.785 789
- [8] Burrage, K. (1995), Parallel and sequential methods for ordinary differential equations, Oxford University press Inc., New York.
- [9] Fatunla, S.O. (1988), Numerical methods for initial value problems in ordinary differential equation. Academic press, inc. UK.

- [10] Hairer, E. Norsett, S. and Wanner, G. (2002), Solving ordinary differential equations II.
   Siff and Differential Algebraic problems. Vol. 2, Springer verlag.
- [11] Lambert, J.D. (1993), Numerical methods for ordinary differential equations: the initial value problems, John Wiley & Sons, London, UK.
- [12] Enright, W.H., Second derivative multistep methods for stiff ordinary differential equations, SIAM J Numer.Anal. 11. 2 (1974), 321 - 331.
- [13] Okuonghae, R.I. (2008), Stiffly stable second derivative continuous linear multistep methods for initial value problems in ordinary differential equations. Ph.D Thesis, Univ. of Benin, Nigeria.