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Abstract 

 

 
Rhotrix system of equations has been dealt with in the literature where one of the 

equations is treated and a number of solvability conditions were suggested. In this 

paper we extend this problem to the case when all the systems were considered to be 

solved simultaneously.  Rhotrix is an object that lies in some way between n n  

dimensional matrices and (2 1) (2 1)n n   dimensional matrices and representation 

of vectors in rhotrix is different from the representation of vectors in matrix.  
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1.  Introduction 

 
The concept of rhotrix was first introduced by Ajibade [1] as an extension of the 

initiative on matrix-tertions and matrix-noitrets suggested by Atanassov and Shannon 

[2]. The initial algebra and analysis of rhotrices was presented in [1]. The 

multiplication of rhotrices defined by Ajibade [1] is as follows: Let R and Q be two 

rhotrices such that 

 

( )

a

R b h R d

e

  and ( )

f

Q g h Q j

k

 .   (1) 

 

The addition and multiplication of rhotrices R  and Q  defined by Ajibade [1] are as 

follows: 

( ) ( )

a f

R Q b g h R h Q d j

e k



    



, 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ah Q fh R

R Q bh Q gh R h R h Q dh Q jh R

eh Q kh R



  



. 
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Another multiplication method for rhotrices called row-column multiplication 

was introduced by Sani [3] in an effort to answer some questions raised by Ajibade 

[1]. The row-column multiplication method is in a similar way as that of 

multiplication of matrices and is illustrated using the matrices R and Q defined in (1) 

as follows: 

( ) ( )

af dg

R Q bf eg h R h Q aj dk

bj ek



  



. 

A generalization of the row-column multiplication method for n-dimensional 

rhotrices was given by Sani [4]. That is: given n-dimensional rhotrices ,n ij lkR a c  

and ,n ij lkQ b d  the multiplication of nR  and nQ  is as follows: 

1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2

2 1 2 1

1

1 1

, , ( ), ( )
t t

n n i j l k i j l k i j i j l k l k

i j l k

R Q a c b d a b c d


 

    , ( 1) / 2t n  . 

 

The method of converting a rhotrix to a special matrix called 'coupled matrix' 

was suggested by Sani [5]. This idea was used to solve systems of n n  and 

( 1) ( 1)n n    matrix problems simultaneously. The concept of vectors, one-sided 

system of equations and eigenvector eigenvalue problem in rhotrices were introduced 

by Aminu [6]. A necessary and sufficient condition for the solvability of one sided 

system of rhotrix was also presented in [6]. If a system is solvable it was shown how a 

solution can be found. Rhotrix vector spaces and their properties were presented by 

Aminu [7]. Linear mappings and square root of a rhotrix were discussed by Aminu in 

[8] and [9] respectively. 

To the author’s knowledge a problem consisting of all rhotrix system of 

equations was not treated. It is the aim of this paper to introduce a problem consisting 

of all rhotrix system of equations and the task is to find a solution to these systems 

simultaneously. 

  

2.  Rhotrix and its basic properties 

 
Let ( 1) / 2t n   for    . By ‘rhotrix’ we understand an object that lies in some way 

between n n  dimensional matrices and (2 1) (2 1)n n   dimensional matrices. That 

is an n-dimensional rhotrix is the following: 
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11

21 11 12

31 21 22 12 13

1 1

2 1 2 1 1 2 1 2

1 1 1 1

... ... ... ... ... ... ...

, ... ... ... ... ...

... ... ... ... ... ... ...

n ij lk t t

t t t t t t t t t t

t t t t t t

tt

a

a c a

a c a c a

R a c a a

a c a c a

a c a

a

       

   

  ,   (2) 

where           for , 1,2,...,i j t  and , 1,2..., 1k l t  . It is straightforward to verify 

that the addition of n-dimensional rhotrices ,n ij lkR a c  and ,n ij lkQ b d is 

                    , , ,n n ij lk ij lk ij ij lk lkR Q a c b d a b c d      ,                     (3) 

where , 1,2,...,i j t and , 1,2... 1l k t  with ( 1) / 2t n  . 

We will use throughout this paper the row-column multiplication method of rhotrices. 

Rhotrix vectors (either row vectors or column vectors) can be represented in t 

different ways where ( 1) / 2t n  . This is different compared to vectors in matrices 

that can be represented in a unique way. For more information on rhotrix vectors the 

reader is referred to [6] and [7].  

There is a unique representation of any t-dimensional matrix vector while any 

n-dimensional rhotrix vector can be represented in t different ways where ( 1) / 2t n 

. This can be illustrated as follows: A 3-dimensional matrix column vector is uniquely 

given as 

1

2

3

x

x

x

 
 
 
 
 

 

 

 whereas, a 5-dimensional rhotrix column vector could be any of 

 

1

2

3

0 0

0 0 0 0

0 0 0

0

x

x

x , 

1

2

3

0

0 0

0 0 0 0

0 0

0

x

x

x

 or 1

2

3

0

0 0 0

0 0 0 0

0 0

x

x

x

.          (4) 

 

We use the notation introduced in [6] as 

                                                                 njx                                                           (5) 

to represent the main rhotrix column vector and the main rhotrix row vector is 

denoted by   

                                                                  inx                                                           (6) 
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 where , 1,2,...,i j t  with ( 1) / 2t n  . Thus, the three rhotrix column vectors in (4) 

are  51 52,x x   and 53x  respectively. Similarly, we denote the other columns and 

rows which are not the main as  
1n kx    

and  
1lnx   

 

 respectively, where , 1,2,..., 1k l t  . Consequently, the n-dimensional matrix 

column vectors will be represented as njx .   The n-dimensional identity rhotrix will be 

denoted by nI  and is given by 

1

0 1 0

0 0 1 0 0

... ... ... ... ... ... ...

0 ... ... ... ... ... 0

... ... ... ... ... ... ...

0 0 1 0 0

0 1 0

1

nI  . 

 

  We also denote by 0 the usual zero, which is the neutral element under 

addition and for convenience we use the same symbol to denote any rhotrix or rhotrix 

vector whose every component is 0.  

We will now summarize some basic properties of rhotrices that will be used 

later on. The following properties hold for n-dimensional rhotrices ,A B  and C   over 

    and    : 

 

 

 

 

3.  Rhotrix system of equations  

 
Let nR be an n-dimensional rhotrix, x, the unknown n-dimensional rhotrix vector and 

b the right hand side rhotrix vector. The equation 

 

nR x b                                                         (7) 

0 0

( ) ( )

( )

( )

( ) ( )

n n

A A A

A B B A

A B C A B C

A B A B

A B C AB AC

A BC AB C

AI A I A

  

   

  

    

  

  



 
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is called a system of n rhotrix equations. Note that in any given system of rhotrix 

equations the position of the non-zero elements in x and b should be the same. For 

instance, if in 5R x b  

 

1

2

3

0

0 0

0 0 0 0

0 0

0

x

x x

x

  then we must have

1

2

3

0

0 0

0 0 0 0

0 0

0

b

b b

b

 . 

 

Using the notation given in (5), rhotrix system of equation (7) gets the form
nj nj

nR x b . Similarly, we write a system of n linear equations in matrices, 

Ax b as nj njAx b . 

It is worthy to mention that instead of rhotrix system of equation (7), one may seek to 

find a solution to the minor rhotrix equation  

                                                   1 1n k n k

nR x d                                                (8) 

where nR is an n-dimensional rhotrix, 1n kx   the unknown  rhotrix vector and 1n kd 

the right hand side rhotrix vector respectively with 1,2,...  and ( 1) / 2k t t n   . This 

task is similar to finding a solution to (7) except that the dimension differs, therefore 

anything done with regards to (7) can simply be extended to (8).  The following 

results show how (7) and similarly (8) can be solved: 

 

Theorem 3.1. [6] Let ,n ij lkR a c  be an n-dimensional rhotrix. A necessary and 

sufficient condition for solvability of the system nj nj

nR x b is that the 

corresponding system of equations, tj tjAx b is solvable, 

where          
   ,              and ( 1) / 2t n  . 

 

Theorem 3.2. [6] Let ,n ij lkR a c  be an n-dimensional rhotrix. Then the system 

nj nj

nR x b  has a unique solution (or an infinite number of solutions) if and only 

if its corresponding system of equations tj tjAx b has a unique solution (or an infinite 

number of solutions), where          
   ,              and ( 1) / 2t n  . 

 

Theorem 3.3. [6] Let ,n ij lkR a c  be an n-dimensional rhotrix and   

       
   an embedded matrix in nR  where ( 1) / 2t n  .  njx  is a solution to the 

system nj nj

nR x b  if and only if  tjx corresponding to njx   is a solution to 

tj tjAx b where 1,tj tj tx b  . 

 

The aim of this paper is to deal with a total rhotrix system of equations which is the 

task of solving (7) and (8) simultaneously. That is  
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1 1

nj nj

n

n k n k

n

R x b

R y d 




                                              (9) 

where nR , ,nj njx b 1n ky  and 1n kd  are n-dimensional rhotrix and rhotrix 

vectors respectively with 1,2,... 1 and ( 1) / 2k t t n    . 

 

In [5] a special type of matrix was formed by rotating the columns of an n-

dimensional rhotrix through 45 in an anticlockwise direction. This matrix is called 

coupled matrix. It was however shown in [8] that the method of converting a rhotrix 

in to a coupled matrix is a linear mapping. 

A t-dimensional coupled matrix is of the form 

 

11 12 1

11 12 1 1

2

11 12 1 1

1 2

... ...

... ...

. . . . . . . .
[ ]

. . . . . . . .

. .

... ...

t

t

T

t n

t t t t

t t tt

a a a

c c c

Ac R

c c c

a a a



   

 
 
 
 

   
 
 
  
 

,                

                 

where 2T

nR denotes a rotation of n-dimensional rhotrix through 45 in anticlockwise 

direction and ( 1) / 2t n   .   

Addition and multiplication (both scalar and matrix) were defined in [8] and [5] 

respectively. If the missing elements in a coupled matrix were filled with zeros, it can 

be used to find a solution to any n n   and ( 1) ( 1)n n   matrix system of equations 

simultaneously [5]. We refer the reader to [5] for a detailed description of this 

procedure. 

 

Corollary 3.1. Let ,n ij lkR a c  be an n-dimensional rhotrix. A necessary and 

sufficient condition for (9) to be solvable is that its corresponding system of equations 
tj tjAx b and 1 1t k t kCy d  are solvable, where          

   ,             , 

         
       ,                    with , 1,2,... 1 and ( 1) / 2l k t t n     

 

 Proof. The statement follows from Theorem 3.1. 

 

Corollary 3.2. Let ,n ij lkR a c  be an n-dimensional rhotrix,          
   and 

         
        embedded matrices in nR  where , 1,2,... 1 and ( 1) / 2l k t t n   

. Then 1,nj n kx y   is a solution to the systems (9) if and only if 1,tj t kx y 

corresponding to 1,nj n kx y    is a solution to tj tjAx b  1 1t k t kCy d   respectively 

where             ,                   . 

 

Corollary 3.3. Let ,n ij lkR a c  be an n-dimensional rhotrix. Then (9) has a unique 

solution (or an infinite number of solutions) if and only if its corresponding system of 
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equations tj tjAx b and 1 1t k t kCy d  each has a unique solution, where   

       
   ,             ,          

       ,                   with 

, 1,2,... 1 and ( 1) / 2l k t t n     

Proof. The statement follows straightforwardly from Theorem 3.2. 

 

An n-dimensional rhotrix ,n ij lkR a c  is said to be invertible if the embedded 

matrices          
   and          

        are invertible [4]. Also if the 

inverse of  A and C are 1A
 and 1C  respectively, then the inverse of  nR  is 

1 1 1,nR A C   . 

The following lemma gives a relationship between an invertible rhotrix and the 

existence of a unique solution to (9). 

  

Lemma 3.1. Let ,n ij lkR a c  be an n-dimensional rhotrix. Then (9) has a unique 

solution  if and only if nR is invertible. 

Proof. For a contradiction, suppose (9) has two distinct solutions say  1

1 1,nj n ku v 
 

and 1

2 2,nj n ku v  and also nR  is invertible. Since 1

1 1,nj n ku v   is a solution then we 

have 

    

   

   

1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

,

.

nj nj nj nj nj

n n n n n n

n k n k n k n k n k

n n n n n n

u I u R R u R R u R b

v I v R R v R R v R d

  

       

   

   
     (10) 

Similarly, 1

2 2,nj n ku v   is a solution to (9) we have: 

    

   

   

1 1 1

2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2

,

.

nj nj nj nj nj

n n n n n n

n k n k n k n k n k

n n n n n n

u I u R R u R R u R b

v I v R R v R R v R d

  

       

   

   
     (11) 

From (10) and (11) we have 1 1

1 2 1 2 and nj nj n k n ku u v v    which is the 

contradiction, therefore (9) has a unique solution. 

Conversely, suppose 1,nj n ku v 
 is the only solution to (9), then 

   

   

1 1 1

1 1 1 1 1 1 1 1

,

.

nj nj nj nj nj

n n n n n n

n k n k n k n k n k

n n n n n n

u I u R R u R R u R b

v I v R R v R R v R d

  

       

   

   
 

This implies that nR is invertible 

 

Corollary 3.4. Let ,n ij lkR a c  be an n-dimensional rhotrix. If nR is invertible then 

the only solution to (9) is 1 1 1,nj n k

n nR b R d  
. 

 

Theorem 3.4. Let ,n ij lkR a c  be an n-dimensional rhotrix. Then (9) has  

(i) a unique solution  (ii) no solution, or (iii) an infinite number of solutions 
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Proof . In this case we only need to show that if (9) has more than one solution then it 

has an infinite number of solutions. Let 1

1 1,nj n ku v 
 and 1

2 2,nj n ku v   be two 

distinct solutions to (9). Then for any   

 

   

 

1 1 2 1 1 2

nj nj nj nj nj nj

n n n n

nj nj nj nj

R u u u R u R u R u

b b b b

 



     
 

   

 

and 

   

 

1 1 1 1 1 1

1 1 2 1 1 2

1 1 1 1

n k n k n k n k n k n k

n n n n

n k n k n k n k

R v v v R v R v R v

d d d d

 



     

   

     
 

   

 

Hence, for any  ,    1 1 1

1 1 2 1 1 2,nj nj nj n k n k n ku u u v v v        is a 

solution to (9). Since the two solutions are distinct then (9) has an infinite number of 

solutions.  

 

We define the homogeneous rhotrix system of equation as a system of the form: 

 

                                            
1

0

0

nj

n

n k

n

R x

R y 




                                  (12) 

where nR is an n-dimensional rhotrix, njx the main rhotrix vector and 1n ky   the 

unknown  rhotrix vector respectively with 1,2,..., 1 and ( 1) / 2k t t n    . The 

homogeneous rhotrix system of equation always has a solution and the solution is 
10  and 0nj n kx y   . The following theorem gives a relationship between 

determinant invertible rhotrix and a nature of a solution to (12). 

 

Theorem 3.5.  Let ,n ij lkR a c  be an n-dimensional rhotrix. The homogeneous 

system (12) has only trivial solution if and only if the corresponding homogeneous 

system of equations in matrix form 0tjAx   and 1 0t kCy    each has only trivial 

solution as a solution, where          
   ,  

              ,          
       ,              with 

, 1,2,... 1 and ( 1) / 2l k t t n     

 

For an n-dimensional rhotrix, nR , and          
   ,          

        the 

embedded matrices in nR  the determinant of nR  denoted as det( )nR is defined [4] as 

follows: 

det( ) det( )det( ).nR A C  

Theorem 3.6. Let ,n ij lkR a c  be an n-dimensional rhotrix. Then the following three 

statements are equivalent  

(i) nR is invertible 

(ii) The homogeneous  rhorix system of equations (12) has only trivial 

solution as a solution  

(iii) det( ) 0nR   
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Proof. Suppose nR  is invertible then the embedded matrices          
   and 

         
        are invertible. If A is invertible then it is row equivalent to tI

[10,11,12], similarly C is invertible then it is row equivalent to 1tI  . Since 

   1det 0 and det 0t tI I   then    det 0 and det 0A C  , consequently 

 det 0 nR  . Conversely, if nR is not invertible then either A is not invertible or C is 

not invertible or both. If A is not invertible then it is row equivalent to a matrix with 

zero row [10,11,12] and hence  det 0 A  which implies that det( ) 0nR  . A similar 

argument can be used for the other two cases and show that in each case det( ) 0nR  . 

It follows that (i) is equivalent to (iii) 

If (12) has trivial solution as the only solution then by Theorem 3.5 each of 0tjAx   

and 1 0t kCx    each has only trivial solution as a solution. If each of the system 

0tjAx  and 1 0t kCx    has trivial solution only then A and C are row equivalent to tI

and 1tI   respectively. Therefore both A and C are invertible, consequently nR  is 

invertible. Suppose nR  is invertible with inverse 1 1 1,nR A C    then it follows that 

 

   

   

1 1 1

1 1 1 1 1 1 1 1 1

0 0

0 0

nj nj nj nj nj nj

n n n n n n

n k n k n k n k n k n k

n n n n n n

x I x R R x R R x R

y I y R R y R R y R

  

        

    

    
 

 

is the only solution to (10). Hence (i) is equivalent to (ii) and the theorem statements 

now follow. 

 

 

4.  An example 

 
 Find a solution to the following rhotrix system of equation (if it exists) 

52 52

5

42 42

5

R x b

R y d




 

where  

1

52

5 2

3

42 52

1

2

0 0

2 1 2 0 0

, ,3 1 4 1 4 0 0 0 0

3 1 2 0 0

1 0

0 0

0 0 0 0 0 6

,  0 0 0 0 0 0 8 0 0

0 0 10 0 0

0 0

x

R x x

x

y by

y

 



 

 

 



 10 

 

42

0

0 0 0

and 0 0 0 3 0

0 1 0

0

d   

 

It is easy to verify that the corresponding system of equations  32 32Ax b  and 
22 22Cy d are 

1

32 32

2

3

0 2 4 6

2 4 2 8

3 3 1 10

x

Ax b x

x

     
     

  
     
          

 and 

 

122 22

2

1 1 3

1 1 1

y
Cy d

y

    
      

    
 

 

respectively. The solutions to the systems are   

 

1

2

3

1

1

1

x

x

x

   
   


   
      

 and 
1

2

2
.

1

y

y

   
   
  

 

 

Therefore, by Corollary 3.2 the problem has a solution which is  

 

52 42

0 0

0 0 1 0 0 0

, .0 0 1 0 0 0 0 0 2 0

1 0 0 0 1 0

0 0

x y   

 

Conclusion 

 
As an extension to the idea of rhotrix system of equations discussed in [6], in this 

paper rhotrix system of equation which consists of all the possible equations was 

discussed and a number of solvability conditions were suggested. It was however 

shown that the task of solving this type of problem leads to solving n n   and 

( 1) ( 1)n n   matrix system of equations simultaneously. The method of solving this 

matrix system of equations was suggested in [5] which involved the use of coupled 

matrix operator introduced in [8]. Therefore, our work highlighted the importance of a 

coupled matrix and coupled matrix operator in solving systems of rhotrix equations.  

 

 

 



 11 

References 
 

[1] A.O. Ajibade, The concept of rhotrix in mathematical enrichment, Int. J. Math. 

      Educ. Sci.Technol.34 (2003)  175-179. 

[2] K.T. Atanassov, A.G. Shannon, Matrix-tertions and matrix noitrets: exercises in 

      mathematical enrichment, Int. J. Math.  Educ. Sci. Technol.  29 (1998), 898-903 

[3] B. Sani, An alternative method for multiplication of rhotrices, Int. J. Math. Educ. 

     Sci. Technol. 35 (2004), 777-781. 

[4] B. Sani, The row-column multiplication for high dimensional rhotrices, Int. J.  

     Math. Educ. Sci. Technol. 38 (2007) 657-662. 

[5] B. Sani, Conversion of a rhotrix to a coupled matrix, Int. J. Math. Educ. Sci.  

     Technol. 39 (2008) 244-249.  

[6] A. Aminu, The equation Rnx=b over rhotrices, Int. J. Math. Educ. Sci  Technol.  

     41 Issue 1 (2010), 98-105 

[7] A. Aminu, Rhotrix vector spaces, Int. J. Math. Educ. Sci. Technol. 41 Issue 4  

     (2010)  531-538 

[8] A. Aminu, An example of linear mapping: extension to rhotrices, Int. J. Math. 

     Educ. Sci  Technol. 41, Issue 5 (2010)  691-698 

[9] A. Aminu, On the linear systems over rhotrices, Notes on Number Theory and  

     Discrete Mathematics, (2009) 15: 7-12 

[10] S.I. Grossman, Elementary Linear Algebra, Wadsworth California, 1984 

[11] L. Hogben (ed.), Handbook of Linear Algebra, Discrete Mathematics and  

     its Applications, Vol. 39, Chapman and Hall/CRC, Baton Rouge, L.A. 2007 

[12] S. Lipschutz, M. Lipson, Schaum outline series in Linear Algebra, 3
rd

 Edition, 

    McGraw-Hill, Newyork (2004) 


