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Abstract 

 

 
The determinant method (Cramer rule) is one of the well-known methods that is 

formulated and proved in linear algebra on matrices. In this paper we extend this 

method to the concept of rhotrix.  Rhotrix is an object that lies in some way between 

n n  dimensional matrices and (2 1) (2 1)n n   dimensional matrices and 

representation of vectors in rhotrix is different from the representation of vectors in 

matrix.  
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1.  Introduction 

 
The concept of rhotrix was first introduced by Ajibade [1] as an extension of the 

initiative on matrix-tertions and matrix-noitrets suggested by Atanassov and Shannon 

[2]. The initial algebra and analysis of rhotrices was presented in [1]. The 

multiplication of rhotrices defined by Ajibade [1] is as follows: Let R and Q be two 

rhotrices such that 

 

( )

a

R b h R d

e

  and ( )

f

Q g h Q j

k

 .   (1) 

 

The addition and multiplication of rhotrices R  and Q  defined by Ajibade [1] are as 

follows: 

( ) ( )

a f

R Q b g h R h Q d j

e k



    



, 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ah Q fh R

R Q bh Q gh R h R h Q dh Q jh R

eh Q kh R



  



. 

 

Another multiplication method for rhotrices called row-column multiplication 

was introduced by Sani [3] in an effort to answer some questions raised by Ajibade 

[1]. The row-column multiplication method is in a similar way as that of 

multiplication of matrices and is illustrated using the matrices R and Q defined in (1) 

as: 

 

( ) ( )

af dg

R Q bf eg h R h Q aj dk

bj ek



  



. 

 

A generalization of the row-column multiplication method for n-dimensional 

rhotrices was given by Sani [4]. That is: given n-dimensional rhotrices ,n ij lkR a c  

and ,n ij lkQ b d  the multiplication of nR  and nQ  is as follows: 

 

1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2

2 1 2 1

1

1 1

, , ( ), ( )
t t

n n i j l k i j l k i j i j l k l k

i j l k

R Q a c b d a b c d


 

    , ( 1) / 2t n  . 

 

The method of converting a rhotrix to a special matrix called 'coupled matrix' 

was suggested by Sani [5]. This idea was used to solve systems of n n  and 

( 1) ( 1)n n    matrix problems simultaneously. The concept of vectors, one-sided 

system of equations and eigenvector eigenvalue problem in rhotrices were introduced 

by Aminu [6]. A necessary and sufficient condition for the solvability of one sided 

system of rhotrix was also presented in [6]. If a system is solvable it was shown how a 

solution can be found. Rhotrix vector spaces and their properties were presented by 

Aminu [7]. Linear mappings and square root of a rhotrix were discussed by Aminu in 

[8] and [9] respectively. The rhotrix system of equations was discussed by Aminu 

[10] and a number of solvability conditions were suggested. 

To the author’s knowledge Cramer rule was not extended to rhotrix.  It is the 

primary aim of this paper to extend this well-known theorem to rhotrix and show how 

it can be used to solve rhotrix system of equations. 

  

 

 

2.  Rhotrix and its basic properties 

 
Let ( 1) / 2t n   for   . By ‘rhotrix’ we understand an object that lies in some way 

between n n  dimensional matrices and (2 1) (2 1)n n   dimensional matrices. That 

is an n-dimensional rhotrix is the following: 
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11

21 11 12

31 21 22 12 13

1 1

2 1 2 1 1 2 1 2

1 1 1 1

... ... ... ... ... ... ...

, ... ... ... ... ...

... ... ... ... ... ... ...

n ij lk t t

t t t t t t t t t t

t t t t t t

tt

a

a c a

a c a c a

R a c a a

a c a c a

a c a

a

       

   

  ,   (2) 

 

where           for , 1,2,...,i j t  and , 1,2..., 1k l t  . It is straightforward to verify 

that the addition of n-dimensional rhotrices ,n ij lkR a c  and ,n ij lkQ b d is 

                    , , ,n n ij lk ij lk ij ij lk lkR Q a c b d a b c d      ,                     (3) 

where , 1,2,...,i j t and , 1,2... 1l k t  with ( 1) / 2t n  . 

We will use throughout this paper the row-column multiplication method of rhotrices. 

Rhotrix vectors (either row vectors or column vectors) can be represented in t 

different ways where ( 1) / 2t n  . This is different compared to vectors in matrices 

that can be represented in a unique way. For more information on rhotrix vectors the 

reader is referred to [6] and [7].  

There is a unique representation of any t-dimensional matrix vector while any 

n-dimensional rhotrix vector can be represented in t different ways where ( 1) / 2t n 

. This can be illustrated as follows: A 3-dimensional matrix column vector is uniquely 

given as 

1

2

3

x

x

x

 
 
 
 
 

 

 

 whereas, a 5-dimensional rhotrix column vector could be any of 

 

1

2

3

0 0

0 0 0 0

0 0 0

0

x

x

x , 

1

2

3

0

0 0

0 0 0 0

0 0

0

x

x

x

 or 1

2

3

0

0 0 0

0 0 0 0

0 0

x

x

x

.          (4) 

 

We use the notation introduced in [6] as 

                                                                 njx                                                           (5) 

to represent the main rhotrix column vector and the main rhotrix row vector is 

denoted by   

                                                                  inx                                                           (6) 
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 where , 1,2,...,i j t  with ( 1) / 2t n  . Thus, the three rhotrix column vectors in (4) 

are  51 52,x x   and 53x  respectively. Similarly, we denote the other columns and 

rows which are not the main as  
1n kx    

and  
1lnx   

 

 respectively, where , 1,2,..., 1k l t  . Consequently, the n-dimensional matrix 

column vectors will be represented as njx .   The n-dimensional identity rhotrix will be 

denoted by nI  and is given by 

 

1

0 1 0

0 0 1 0 0

... ... ... ... ... ... ...

0 ... ... ... ... ... 0

... ... ... ... ... ... ...

0 0 1 0 0

0 1 0

1

nI  . 

 

  We also denote by 0 the usual zero, which is the neutral element under 

addition and for convenience we use the same symbol to denote any rhotrix or rhotrix 

vector whose every component is 0.  

We will now summarize some basic properties of rhotrices that will be used 

later on. The following properties hold for n-dimensional rhotrices ,A B  and C   over 

   and    : 

0 0

( ) ( )

( )

( )

( ) ( )

n n

A A A

A B B A

A B C A B C

A B A B

A B C AB AC

A BC AB C

AI A I A

  

   

  

    

  

  



 

 

 

3.  Rhotrix system of equations  

 
Let nR be an n-dimensional rhotrix, x, the unknown n-dimensional rhotrix vector and 

b the right hand side rhotrix vector. The equation 

 

nR x b                                                         (7) 

 



 5 

is called a system of n rhotrix equations. Note that in any given system of rhotrix 

equations the position of the non-zero elements in x and b should be the same. For 

instance, if in 5R x b  

 

 

1

2

3

0

0 0

0 0 0 0

0 0

0

x

x x

x

  then we must have

1

2

3

0

0 0

0 0 0 0

0 0

0

b

b b

b

 . 

 

 

Using the notation given in (5), system of n rhotrix equation (7) gets the form
nj nj

nR x b . Similarly, we write a system of n linear equations in matrices, 

Ax b as nj njAx b . 

Instead of rhotrix equation (7), one may seek to find a solution to the minor rhotrix 

equation  

 

                                                   1 1n k n k

nR x d                                                (8) 

 

where nR is an n-dimensional rhotrix, 1n kx   the unknown  rhotrix vector and 1n kd 

the right hand side rhotrix vector respectively with 1,2,...  and ( 1) / 2k t t n   . This 

task is similar to finding a solution to (7) except that the dimension differs, therefore 

anything done with regards to (7) can simply be applied to (8). In this paper we will 

deal with a total rhotrix system of equations which is the task of solving (7) and (8) 

simultaneously using determinant method. That is  

 

                                                   
1 1

nj nj

n

n k n k

n

R x b

R y d 




                                              (9) 

 

where nR , ,nj njx b 1n kx  and 1n kd  are as defined in (7) and (8) with 

1,2,...  and ( 1) / 2k t t n   . 

. 

Theorem 3.1. [10] Let ,n ij lkR a c  be an n-dimensional rhotrix. A necessary and 

sufficient condition for (9) to be solvable is that its corresponding system of equations 
tj tjAx b and 1 1t k t kCy d  are solvable, where          

   ,             , 

         
       ,                    with , 1,2,... 1 and ( 1) / 2l k t t n    . 

 

 Theorem 3.2. [10] Let ,n ij lkR a c  be an n-dimensional rhotrix,          
   and 

         
       , embedded matrices in nR  where 

, 1,2,... 1 and ( 1) / 2l k t t n    . Then 1,nj n kx y   is a solution to the systems (9) if 
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and only if  1,tj t kx y  corresponding to 1,nj n kx y    is a solution to tj tjAx b  

1 1t k t kCy d   respectively where             ,                   . 

 

It follows from Theorems 3.1 and 3.2 that (9) can be solved using the idea of coupled 

matrix introduced in [5]. This was mentioned in [10] 

  

Theorem 3.3. [10] Let ,n ij lkR a c  be an n-dimensional rhotrix. Then (9) has a 

unique solution (or an infinite number of solutions) if and only if its corresponding 

system of equations tj tjAx b and 1 1t k t kCy d  each has a unique solution, where 

         
   ,             ,          

       ,                    with 

, 1,2,... 1 and ( 1) / 2l k t t n     

 

An n-dimensional rhotrix ,n ij lkR a c  is said to be invertible if the embedded 

matrices          
    and          

        are invertible [3]. Also if the 

inverse of  A and C are 1A
 and 1C  respectively, then the inverse of  nR  is 

1 1 1,nR A C   . 

 

Lemma 3.1. [10] Let ,n ij lkR a c  be an n-dimensional rhotrix. Then (9) has a 

unique solution  if and only if nR is invertible and in this case the solution is 

1 1 1 1,nj nj n k n k

n nx R b y R d     . 

 

 

4.  Cramer’s rule on rhotrix 
 

Let ,n ij lkR a c be an n-dimensional rhotrix defined in (2), the determinant of 

,n ij lkR a c  is defined [4] as  

 

                      det( ) det , det( )det( )n ij lkR a c A C                             (10) 

 

 where          
    and          

        are the embedded matrices in nR . 

Consider the rhotrix equation nj nj

nR x b  where  nR is an n-dimensional rhotrix, 

njx  the unknown n-dimensional rhotrix vector and njb  the right hand side rhotrix 

vector. Let iA

nR be a rhotrix formed by replacing the i
th

 column of the matrix   

       
    embedded in nR  by the non-zero column of the rhotrix column vector 

njb . Similarly, denote by iC

nR  a rhotrix formed by replacing the i
th

 column of the 

matrix          
        embedded in nR  by the non-zero column of the rhotrix 

column vector 1n kd 
.Furthermore, denote by 
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     

     

1 2

11 2

1 2

1 2 1

det( ), det , det ,..., det

det , det ,..., det

t

t

AA A

n n n t n

CC C

n n t n

D R M R M R M R

N R N R N R 



   

  
 

where ( 1) / 2t n  . 

 

Theorem 4.1. (Cramer)  Let ,n ij lkR a c  be an n-dimensional rhotrix. The system 

(9) has a unique solution if and only if 0D  .Moreover, the  and i ix y components of 

the solution are given by   

 

                                    

1 2
1 2

11 2
1 2 1

, ,..,

, ,..,

t
t

t
t

MM M
x x x

D D D

NN N
y y y

D D D




  

  

                                   

where , 1,2,...,  and , 1,2,..., 1 with ( 1) / 2i j t l k t t n     . 

 

Proof. Suppose (9) has a unique solution then it follows from Theorem 3.3 that the 

corresponding system of equations, tj tjAx b  and 1 1t k t kCx d   each has a unique 

solution, where          
   ,              and ( 1) / 2t n  . It follows from [9] that 

tj tjAx b  and 1 1t k t kCx d   each has a unique solution if and only if  and also A C  are 

invertible, moreover  and A C are invertible if and only if det( ) 0 anddet( ) 0A C   

respectively [11,12,13]. Because det( ) 0 anddet( ) 0A C   then 0D  . 

Conversely, suppose 0D  , then det( ) 0 anddet( ) 0A C  the statement now follows 

from the Cramer’s rule on matrices and Theorems 3.1, 3.2 and 3.3. 

 

 

5.  An example 

 
 Use determinant method (Cramer’s rule) to solve the rhotrix system of equation  

 
52 52

5

42 42

5

R x b

R y d




 

where  

1

52

5 2

3

1 0

1 3 1 0 0

, ,3 1 2 2 1 0 0 0 0

1 2 3 0 0

1 0

x

R x x

x

 




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52 42

1

2

42

0 0

0 0 5 0 0 0

 ,0 0 1 0 0 0 0 0 0

3 0 0 0 0

0 0

0

0 0 0

 and .0 0 0 2 0

0 2 0

0

b y y

y

d

 

 

 

 

Using the definition of determinant of rhotrix we have 

 

5 1

1 5

1 3 1 1 3 1

det( ) det 20, det 803 1 2 2 1 3 1 2 2 1

1 2 3 1 2 3

1 1

D R M

   
   

   
        
   

    
       

 

2 3

1 1

1 3 5 1 3 1

det 40,and det3 1 1 2 1 3 1 2 2 5

3 2 3 1 2 1

1 3

M M

   
   
   
       
   

    
      

. 

Also, 

1 2

5 5

1 2 1 1 3 1

det 40 and det 403 2 2 2 1 3 1 2 2 1

1 2 3 1 2 3

1 1

N N

   
   

     
         
   

    
       

 

 

Thus we have, 

 

31 2
1 2 3

1 2
1 2

80 40 60
4, 2 and 3

20 20 20

40 40
2and y 2.

20 20

MM M
x x x

D D D

N N
y

D D


         


      

 

 

Hence, the solution to the system are the vectors 
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52 42

0 0

0 0 4 0 0 0

 and 0 0 2 0 0 0 0 0 2 0

3 0 0 0 2 0

0 0

x y   . 

 

 

Conclusion 

 
In this paper the well-known determinant method (Cramer’s rule) was extended to 

rhotrix system of equations. The method was successfully formulated and proved in 

rhotrix and also shows how the method can easily be used to find a solution to rhotrix 

system of equations (if it exists).  Unlike in matrix system of equations where it is 

required that the matrix must be square in order to apply the Cramer’s rule it is even 

more stronger in rhotrix where it can be applied on any rhotrix system of equations 

provided that determinant of the given rhotrix is not zero. 
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