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Abstract 
 

Cloud compute resources such as managed computing power, storage, platforms, services, CPU cycles, memory, 

and network bandwidths exist as compute instances. We describe these cloud resources as Cloud Compute 

Commodities (C3). One of the specific characteristics of C3 is guaranteeing their availability since they exist as 

instances (or compute cycles) of C3. This specific C3 characteristic feature make pricing them a challenge. Several 

initiatives (GoGrid, Amazon Elastic Compute Cloud (EC2), Simple Queue Service (SQS)) have developed various 

frameworks for cloud resource management and cloud economies using resource optimization techniques. However, 

because it is believed that cloud resources usage is relatively affordable, research efforts to model a standard 

pricing procedure that capture the realistic priced value of cloud resources have not received attention.  
This paper is positioned to develop a novel approach for pricing C3. The novelty in the model design is in the 

application of the theory of financial option to price instances of C3. To achieve the set objectives, we apply our 

three research threads; financial option (to model price movements), real option (to capture the realistic value of 

the priced resources), and fuzzy logic techniques (to characterize availability and hence the user satisfaction and 

provider profitability measured as Quality of Service (QoS)). We simulate our model using real trace data with 

cloudbus (a market-oriented cloud computing simulation toolkit) to validate the model. 

 

Key Words: Financial Options, Option Pricing, Distributed Systems, Cloud Computing, 

Cloud Compute Commodities. 

 

1.0 Background/Introduction 

 

Over the years, there has been an upsurge in the development and application of resource-

intensive computations. The Search for Extraterrestrial Intelligence at Home (SETI@Home) [1] 

and Large Hadron Collider (LHC) [2] are two examples of projects that use resources and 

computations beyond super-computing. The consequence of the upsurge in resource-intensive 

computations is the emergence of pools of virtualized resources and service abstractions called 

computing cloud or cloud computing. Foster et al. [3] describe the cloud as a large-scale of 

distributed computing paradigm that is driven by economies of scale where a pool of abstractions 

of virtualized resources (managed computing power, storage, platforms, services, CPU cycles, 

memory, network bandwidths, throughput, disks, processor, and various measurements, 

instrumentation tools) are delivered on-demand to external customers over the Internet. We refer 

to these virtualized resources as Cloud Compute Commodities (C3) which are provisioned as 
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needed from a centralized infrastructure. The virtualized resources are delivered over the Internet 

as services, i.e., they are seen as x-as-a-service (where x is any one type of the C3-s). 

 
Resource virtualization have enabled cloud resource providers (haven taken advantage of the 

resource virtualization) to scale up resource availability. However, the provider put the cost of 

access of the resources on metered basis. In Section 2.4, we provide Amazon’s EC2 static pricing 

available in the United States and in Europe in Table 1 and Table 2 respectively. A metered-

based cost is a static pricing approach which does not offer flexibility advantage for the user [4]. 

In a situation where availability is scaled up with multi-tenancy (as it is with cloud resources), an 

offer of user flexible pricing agility is necessary for the delivery of on-demand user computing 

requirements. Research efforts in cloud computing have focused mostly on security related 

issues [5, 6, 7, 8], cloud resource utilization improvement [9], and middleware/infrastructure-

based is-sues [10]. Since cloud resources usage has been relatively cheap, there are only a few 

efforts reported in the literature that price cloud resources. The pricing strategy adopted so far 

has been based on static price allocation without a standard and justification for the imposed 

charges. The reason is because pricing instances (or virtual machines) of cloud resources is a 

major challenge from the view point of a generic pricing problem. Since C3 are virtualized, it 

follows that their availability are both timed and instance-based. It also follows that C3 usage 

could occur with flexibilities in usage. These flexibilities between using the cloud resources 

immediately and using them later in the future. If nt is the time of usage, then      denotes 

immediate use and      denotes future usage time. To price C3 in the presence of these 

flexibilities, we treat them as real assets and employ our three research threads to obtain their 

realistic value; financial option (to model price movements), real option (to capture the realistic 

value of the priced re-sources), and fuzzy logic techniques (to characterize avail-ability and 

hence the user satisfaction and provider profitability measured as Quality of Service (QoS)). We 

model the cloud resources as real assets thereby see them as commodities. This enables us to 

develop an option pricing solution to price the cloud resources. We use a discrete time approach 

to capture the cloud spot prices starting a simple binomial tree [11] and we then extend to a 

trinomial in an American option approach for a multi-asset C3. We model the pricing function as 

a real option problem by formulating the cloud compute commodities pricing problem as real 

option pricing problem multi-asset C3. The cloud is often seen as an infinitely scaled 

visualization (projected scalability) of resources in terms of resource availability. However, 

cloud providers (operators) may not fully support infinite and unlimited cloud resource 

scalability because of users’ requests/computational needs (actual scalability) that does not scale 

with the same proportion. 

 
 
 

 



1.1    Financial Options 

 

Options are derivative securities because their value is a derived function from the price of 

some underlying asset upon which the option is written. They are also risky securities because 

the price of their underlying asset at any future time may not be predicted with certainty. This 

means the option holder has no assurance that the option will be in-the-money (i.e., yield a non-

negative reward), before expiry. A financial option is defined (see, for example [12]) as the right 

to buy or to sell an underlying asset that is traded in an exchange for an agreed-upon sum. The 

right to buy or sell an option may expire if the right is not exercised on or before a specific 

period and the option buyer forfeits the premium paid at the beginning of the contract. The 

exercise price (strike price) specified in an option contract is the stated price at which the asset 

can be bought or sold at a future date. A call option grants the holder the right to purchase an 

underlying asset at the specified strike price. On the other hand, a put option grants the holder the 

right to sell an underlying asset at the specified strike price. An American option can be 

exercised at any time during the life of the option contract while a European option can only be 

exercised at expiry. 

 

1.2 Real Options  

 

A real option provides a choice from a set of alternatives. To hold a real option means to have 

a certain possibility for a given time to either choose for or against making an investment 

decision without upfront commitment. In the context of this study, these alternatives include the 

flexibilities of exercising, deferring, finding other alternatives, waiting or abandoning an option. 

We capture these alter-natives using fuzzy logic [13] and express the choices as a fuzzy number. 

A Fuzzy number is expressed as a membership function that lies between 0 and 1, i.e., a 

member-ship function maps all elements in the universal set   to the interval [0, 1]. In this paper, 

we focus on the valuation of a compute cloud resources as one of the extensions to the research 

efforts carried out in [4]. We emphasize the provision of a satisfaction guarantee in terms of the 

QoS requirements for cloud resource users and resource owners through a regulated profit level 

using a real option approach. We achieve the stated objective by introducing and varying the 

Option Pricing Factor )( fpo . The contributions of this paper will help to achieve some general 

cloud system objectives such as: (i) to keep the cloud “busy” for optimal gain (profitability 

wise); this ensures wait states are minimized, (ii) to provide an assessment for the evaluation of 

the cost of use of cloud resources and applications in order to justify its design and estimate the 

future benefits, (iii) to provide a generic plan for managing the resources/infrastructure of a 

cloud that are essential for meeting the peak demands of cloud resources utilization, (iv) to 

facilitate continuous re-search activities through timely upgrades on the cloud infrastructure, and 

(iv) to provide a satisfaction guarantee in terms of the QoS requirements for cloud resource users 

and resource owners profitability.  



 
The rest of this paper is organized as follows. In Section 2 we provide a review of related 

work and provide the model formulation and assumptions in Section 3. We dis-cuss the pricing 

infrastructure in Section 4. In Section 5 we present the results of our experiments and in Section 

6 we provide some concluding remarks. 

 

 

2 Related Work  

 

Large corpuses of related work have applied financial option pricing to price financial 

derivatives. One of the most prominent works is the popular Black-Scholes Model (BSM) [14]. 

The BSM is applied in situations where we experience continuous price jumps (with a higher 

volatility) and it requires solving a partial differential equation before we can compute the price 

movement. The binomial lattice could also be used to approximate discrete price jumps. One 

example of its application is seen in the area of deregulating electricity and of course gas market 

in order to design an efficient distributed network for the pricing framework. Allenotor and 

Thulasiram in [15] applied the theories of financial option to price grid resources given 

uncertainty in demand. The work in [15] is generally based on the risk factors associated with 

pricing; whether the user will make any gain with respect to obtaining the expected (stated QoS) 

and whether the provider will make any gain in terms of profitability considering the cost of 

infrastructure in the computational grid.   
Rhaman et al. in [16] proposed to utilize option pricing technic to mitigate the risk of price 

fluctuations in spot markets. Their main idea is to apply a combination of spot instances as well 

as option instances to schedule work-load. Basically, they developed a cloud provider-side 

option model based on binomial option pricing model. The approach in Rahman et al. [16] 

characterized the cost of European options. Recall in Section 1 on financial option background, 

European option cannot be exercised any time before the expiration even when the option value 

at the prevailing time is optimal or profitable. However, American option (that we choose to 

apply in this paper) gives the user a handle of flexibility to exercise the option any time before 

the expiration date. This means at any point in time, the user can exercise the option. In this 

paper, we apply American options to provide flexibility as distinct from Rahman et al. [16].  
Currently, the cost of using cloud resources is only marginal when compared to owned 

physical computing infrastructures. However, a trend is developing due to large interest in cloud 

for public computing. Hence, a sudden explosion of cloud usage is expected in near future 

geared towards pushing cost, management, upgrade, and maintenance of infrastructures to the 

provider. With an outburst of cloud resources usage, the marginal cost may rise above a 

threshold value which nullifies the intended advantage. To avoid such bottleneck, Amazon has 

introduced a Simple Storage Service (S3) [17] for grid consumers. S3 offers a pay-as-you-go 

online storage, and as such, it also provides an alternative to in-house mass storage. In the 

literature, existing studies have not focus attention on the dynamics of cloud resource pricing. 

They have principally put research efforts on capacity storage and security concerns. For 



example, Palankar et al. in [17] reviewed the features of Amazon S3, focusing on the core 

concepts, the security model, and data access protocols. After characterizing science storage 

clouds in terms of data usage characteristics and storage requirements, they proceed to 

benchmark S3 with respect to data durability, data availability, access performance, and file 

download via BitTorrent (in order to reduce cost). With this information as a baseline, they 

evaluate S3’s cost, performance, and security functionality. Palankar et al. concluded by 

observing that many science cloud applications do not necessarily need all three of S3’s most 

desirable characteristics – high durability, high availability, and fast access. Finally, Palankar et 

al. noted that S3’s current security architecture lack sufficiently support for delegation and 

auditing, and built-in trusts which are necessary for developing pricing and cost models. 
 

To date and to the best of our knowledge, this is the first time research efforts to price cloud 

compute resources using the theories of financial option are made. However, some related efforts 

in the literature such as Rhaman et al. [16] applied financial options to schedule cloud workload 

and characterize the cost of scheduling cloud workload based on European options. Other 

commercial cloud resource providers such as Amazon (EC2), GoGrid, FlexiScale, Mosso, 

ElasticHost, Joyent, AppNexus, Google Application Engine, and Microsoft Grid offered 

arbitrary charges without user-side consideration for flexible pricing and they did not use 

financial options. 

 
2.1    Simple Queue Service (SQS) 

 
Amazon’s Simple Queue Service (SQS) allows users to create one or more named queues. 

SQS supports three basic operations. A named message consisting of up to 256K of data and 4K 

of metadata can be written into a queue; one or more messages can be read from a queue; and 

one or more named messages can be deleted from a queue. When a message is read from SQS 

the reading process specifies a time lock. While the message is locked, no other read request will 

return the message. The reading process must delete the message before its time lock expires, 

otherwise another concurrent process may read the message instead. 

 
2.2    Elastic Cloud Compute (EC2) 

 
Amazon charges separately for computer resources consumed and for bandwidth. Amazon’s 

pricing for EC2 is $0:10 per hour for each instance, with fractional hours rounded up. Instances 

must be shut down with the EC2-terminate-instances command. Instances that have crashed and 

not automatically rebooted continue to acquire charges. Storage for S3 is charged on a flat basis 

of $0:15 per gigabyte stored per month, with the amount of data stored being calculated twice 

each day. Amazon S3 uses buckets (similar to file directory) to store files. A few important S3 

commands include PUT (put filename.xyz s3 – to load a file to a bucket (if bucket is s3)), LIST 

(ls s3 – list the contents of a bucket), and GET (get s3 – download the contents of a bucket). 

Starting June 1, 2007, Amazon has also charged a per-transaction fee of $0:10 for every 1,000 



PUT or LIST requests, and $0:10 for every 10,000 GET requests. Use of SQS is charged at $0:10 

for every thou-sand messages sent. Originally pricing for bandwidth for the Amazon Web 

Services (AWS) services was charged on a flat basis of $0:20 per gigabyte transferred in or out 

of the Amazon network. Under the new pricing model Amazon charges $0:10 per gigabyte sent 

from the Internet to Amazon. Bandwidth from Amazon is charged at $0:18 per gigabyte 

transferred for the first 10 TB of data transferred per month, $0:16 per gigabyte for the next 40 

TB transferred, and $0:13 for each gigabyte transferred thereafter. There is no charge for moving 

data between EC2, S3, and SQS. 

 
In EC2, the resource charging concept is usage based. For example, the cost of computation 

(to use a CPU (based on time)) is obtained by multiplying the price per compute cycle with the 

number of compute cycles that the computation used. This type of static pricing scheme does not 

provide a fair charge for computation that requires shorter time to complete. Amazon EC2 

charges at instant hour. For ex-ample, it offers computational power equivalent to a server with 

1:7GHz Xeon CPU, 1:75GB RAM, 160GB HDD, and 250Mb/s of network speed, is priced at 

$0:10 per instant-hour [18]. In a similar approach, SUN Grid charge $1:00 per CPU hour. In 

contrast to Amazon, SUN does not pro-vide any specification for equivalent of hardware they 

offer for sale. SUN Grid idea is similar to paying a high penalty for jobs that takes longer to 

complete on the average. Al-though that may seem to charge a flat rate of $1:00 per CPU hour, 

however, users actually pay for the cycles they do not use. The goal of SUN Grid and EGEE 

(EGEE also use the same charging technique as SUN Grid called Price Authority [19]) is to 

minimize the queue waiting time using economic scheduling. The cloud is a dynamic resource 

reservoir as a result, static charging (usage-based charging, flat-rate charging, and waiting time 

charging) do not capture the essential goals that we address in this paper. 

 
2.3 Market-Oriented Cloud Simulators (CloudSim) 

 
A cloud infrastructure (large distributed system), consists of numerous parameters and 

executes complex interactions between the users and resources. These sets of complexity in the 

grid interaction make the analytical modeling of the cloud almost impractical without simulating 

the action of the cloud using a simulator. In this paper, we use a simulator. The fundamental 

advantage of the simulator is that it is independence to the execution platform. Therefore, 

simulating a mechanism of one million nodes distributed system on a single personal computer is 

not rare. This ad-vantage is made possible because the simulator does not run the real distributed 

system but an abstract model of it. 
 

GridSim Toolkit [20] is similar to SimGrid [21] (Sim-Grid2 provides similar abstraction 

through the notion of Agents) in that it is a discrete event simulator. However, compared to 

SimGrid the GridSim’s original design con-siders the existence of several brokers. GridSim 



manages several abstractions also called entities. These include user, broker, resource, grid 

information service, input and output. Users in GridSim are characterized by job type (execution 

time, number of parametric replications, etc.), the scheduling optimization strategy, activity rate, 

time zone, absolute deadline and budget and their associated relaxation parameters. When the 

brokers receive the tasks submitted by users carry out their scheduling algorithm. However, 

because the users must compete for the same set of resources (the resources are supposed to be 

finite); brokers have to find tradeoffs (meeting project deadline) between users requirements. 

GridSim describe its resources as number of processors, cost of processing, performance, 

internal scheduling policy, workload, and time zone. Significant difference be-tween GridSim 

and other simulators is seen in the management of inputs and outputs in two separate ways as a 

means to express the performance differences between parameters and results communication.  

 

CloudSim [22] is a higher-level simulator designed to investigate interactions and 

interferences between compute instances and to manage their occurrences. Calheiros et al. [22] 

describes the layered implementation of the CloudSim (the enthusiastic reader is encouraged to 

see the layered architecture in [22]) software framework and architectural components. The 

lowest level of CloudSim consists of discrete event simulation engine. This engine implements 

the core functions for higher-level simulation such as queuing jobs, event processing, creation of 

processing elements or component systems such as services, host, data center, resource broker, 

and virtual machines. The simulation engine also managements the simulation clock. Basically, 

the CloudSim is implemented by functionally and programmatically extending libraries of the 

GridSim. The CloudSim layer also has the capability maintaining concurrency among thousands 

of system components.  

 

2.4    Commercial Cloud Resource Providers 

 

Consequent to the increasing cost of systems upgrades, maintenance, and rapid depreciation, 

various IT businesses (e-business and e-commerce activities) prefer to rent re-sources (services) 

instead of buying them for computation purposes. Several companies are now involved in 

offering resource as a service. Some of these companies include: AppNexus [23], GoGrid [24], 

Joyent [25], Google Application Engine [26], and Microsoft Grid [27]. The pioneering efforts of 

Amazon evolved from its requirement to power its own www.amazon.com. Amazon Web 

Services (AWS) include Simple Service Storage [17] (S3), Elastic Compute Cloud (EC2), and 

Simple Queue Service [18] (SQS). EC2 is a Web service that provides resizable compute 

capacity which is designed to make Web-scale computing easier for developers, while the related 

Amazon Simple Storage Service (Amazon S3) is a cloud storage that provides storage on 

demand [18]. Cloud computing is a system that involves dynamic scaling of visualized resources 

which are provided as a service (storage, platform, computing power, application, software, and 



hardware) – resource offered as a service (Resource as a Service (RaaS)) over the Internet. 
 

The Amazon EC2 is a Web-scale computing service that provides scalable compute capacity 

[28]. It offers on-demand computing resources in the form of a virtual ma-chine that is accessible 

using the Internet. Using the Amazon EC2, a user has full control of virtual machines equivalent 

to a 1:7GHz Xeon CPU, 1:75GB RAM, 160GB HDD, 250Mb/s network at a price of $0:10 per 

instance-hour (or part hour) [18]. Amazon’s EC2 uses the XEN [29] virtual image platform to 

offer on-demand operating system that consist of a complete virtual computer with a CPU, 

memory, and disk space. The pricing scheme offered by Amazon is simple. Charging is done per 

instance hour used. How-ever, it is not possible to apply dynamic prices or reserve computational 

power [28]. The Tables1 (1 Month = 4 weeks (24*7*4 = 672 hours)) and 2 shows the per hour 

static prices (as of November 2011) of the Amazon EC2 instance machine in the United States 

and Europe respectively. An Amazon instance machine could either be a 32bit or a 64bit 

machine. For instance, Table 1 shows a small 32 bit system that consists of 1:7GB of RAM and 

160GB Hard Disk space. This machine could run a Linux Operation System (OS) for a $0:10 per 

hour (ph) or a Windows OS for $0:125 ph. Similarly, Table 2 shows a small 32bit instance 

machine of the same configuration but for Linux Operation System (OS) of $0:11 per hour (ph) 

or a Windows OS for $0:135 ph. Table 3 shows the summery of monthly resource cost in six 

companies that provide re-source as service. 
 

2
1 Month = 4 weeks (24     7     4 = 672 hours) 

 
Table 1: Instance of EC2 in the United States 

 
 

  RAM DISK LINUX Windows SQL 
 

      Server 
 

Small  1:7GB 160GB $0:10/h $0:125/h  
 

(32bit)    $72/m $90/m  
 

      

Large  7:5GB 850GB $0:40/h $0:50/h $1:10/h 
 

(64bit)    $284/m $360/m $792/m  

     

Extra  15GB 1690GB $0:80/h $1:00/h $2:20/h 
 

Large(64bit)   $568/m $720/m $1584/m 
 

High  1:7GB 350GB $0:20/h $0:30/h  
 

CPU(32bit)   $142/m $214/m  
 

High Ex- 7GB 1690GB $0:80/h $1:20/h $2:40/h 
 

tra       
 

CPU(64bit)   $568/m $864/m $1728/m 
 

 
 

Table 2: Instance of EC2 in the Europe 
 
 

  RAM DISK LINUX Windows SQL 
 

      Server 
 

Small  1:7GB 160GB $0:11/h $0:135/h  
 

(32bit)    $79/m $97/m  
 

      

Large  7:5GB 850GB $0:44/h $0:54/h $1:14/h 
 

(64bit)    $316/m $388/m $792/m  

     

Extra  15GB 1690GB $0:88/h $1:08/h $2:28/h 
 

Large(64bit)   $633/m $777/m $1584/m 
 

High  1:7GB 350GB $0:22/h $0:32/h  
 

CPU(32bit)   $158/m $230/m  
 



High Ex- 7GB 1690GB $0:88/h $1:28/h $2:48/h 
 

tra       
 

CPU(64bit)   $633/m $921/m $1785/m 
 

 
3   Model Formulation and Assumptions 

 
The literature provides several schemes to price financial options. One of the existing 

schemes is the famous Nobel prize Black-Scholes Model [30] (BSM). The BSM requires a 

satisfaction of the solution of the partial differential equation of the option price. Another 

scheme is the application of a discrete time and state binomial model of the under-lying asset 

price. This requires the application of the dis-counted expectations [31, 32]. In this paper, we 

use the trinomial model [12] to solve the financial option pricing problem manifested as 

partial differential equation. This involves using a discrete time approach to capture the dis-

counted expectations in a trinomial-tree structure.  
To price cloud resources, we make the following three assumptions. First, we assume that 

the user has the right but not the obligation to use the cloud resources which he has paid for 

upfront in the stated times. Stating these assumptions ensures that the user gets the sole right 

to exercise the option any time before the expiration (American put or call option). Second, 

since the resources exists as instances, we value them as real assets which make them fit into 

the general stream of investment valuations that we can valuate in the real option valuation 

approach. Since the cloud resources are instances, their availability is characterized by a high 

volatility .  Hence cloud resources utilization times are shorter relative to life of option in 

financial valuation methods. Third, we assume that a holder of the option to use the cloud 

resources has an obligation-free chance of exercising the right. 

 

Table 3: Cost Comparison 

Cloud 

Providers 

 

Memory 

 

HD 

 

Cost/h 

 

Cost/m 

Amazon 7GB 1690GB $0.08 $537.60 

GoGrid 8GB 480GB $0.037 $255.35 

Flexisca;le 8GB 100GB $0.53 $358.50 

Mosso 15GB 620GB $0.096 $645.12 

ElasticHost 8GB 1862GB $0.76 $510.72 

Joyent 32GTB 100GB $5.95 $4,000.00 

 

The obligation-free assumption enables us to apply existing finance option valuation 

theory to model our pricing scheme. Consider (for example) an asset whose price is initially 

0S and an option on the asset whose current price is f . Suppose the option last for a time T

and that during the life of the option the asset price can either move up from 0S to a new level 

uS0 with a payoff from the option value of uf  or move down from 0S to a new level, dS0 and 



with a payoff from the option value of df  where 1u  and 1d . This leads to a two-step 

binomial in Figure 1. Similarly, a multi-Step binomial tree is obtained with more time steps. 

An algorithmic analysis of the binomial model is given in [32]. 

 

3.1 Discretized Real Option 

 

The trinomial-tree model was introduced in [33] to price primarily American-style and 

European-style options on a single underlying asset. Option pricing under the Black-Scholes 

model [30] requires the solution of a stochastic partial differential equation (continuous time 

approach) and satisfied by the option price. Instead, option prices are obtained by building a 

discrete time and state binomial model of the asset price and then apply discounted 

expectations [18]. A generalization of such a binomial valuation model [12] to a trinomial 

model to price option is useful since solving the partial differential equation of the option 

price by the explicit finite difference method is equivalent to performing discounted 

expectations in a trinomial-tree [12]. The asset price in a trinomial-tree moves in three 

directions compared with only two for a binomial tree. 

 

Consider an asset whose current price is S, and r is the risk-less and continuously 

compounded interest rate, the stochastic differential equation for the risk-neutral Geometric 

Brownian Motion (GBM) model of an asset price is given [12] by the expression: 

(3.1.1)                                                   .SdzrSdtdS   

which in terms of logarithm of asset prices can be given as 

(3.1.2)                                                      .dzvdtdx   

where 2/2 v  and .ln Sx   Consider a trinomial model of asset price in a small time 

interval t  where we set the asset price changes by x .The price changes with probabilities 

of an up movement up , probability of steady move (without a change) mp , and probability 

of a downward movement dp . Figure 1 shows a one-step trinomial lattice expressed in terms 

of x  and t . The drift (due to known factors) and volatility ( , due to unknown factors) 

parameters of the asset price can be captured in the simplified discrete process using x , mp , 

and dp . 



 

Figure 1: One-Step Trinomial Lattice. 

 

The space step can be computed (with a choice) using tx  3 . A relationship between 

the parameters of the continuous time process and trinomial process (a discretization of the 

GBM) is obtained by equating the mean and variance over the time interval t  and imposing 

the unitary sum of probabilities, i.e., 

(3.1.3)                                                   .)()0()(][ vdtxppxpxE dmu    

From Equation (3.1.3), 

(3.1.4)                                   .)()0()(][ 222222 tvtxppxpxE dmu    

where the unitary sum of probabilities can be presented as 

(3.1.5)                                                                                      .1 dmu ppp  

Solving Equations (3.1.3), (3.1.4), and (3.1.5) yields the transitional probabilities; 

(3.1.6)                                              )./(/)((*5.0 2222 xtvxtvtpu    

(3.1.7)                                                                 )./)((1 2222 xtvtpm    

(3.1.8)                                              )./(/)((*5.0 2222 xtvxtvtpd    

The trinomial process of Figure 1 is repeated a number of times. As an example in Figure 

2a, we repeat it for 8 steps. For number of time steps (horizontal level) n = 8, the number of 

leaves (height) in such a tree is given by 171n . At any level, the number of nodes i is 

given as 12 i . We index a node by referencing a pair ),( ji where i points at the level (row 

index) and j indicates the distance from the top (column index). Time t is referenced from the 

level index by titi : . From Figure 2(a), node ),( ji is thus connected to node ),1( ji   

(upward move), to node )1,1(  ji (steady move), and to node )2,1(  ji (downward 

move). 
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Figure 2: Trinomial Lattice: (a) 8-Step (b) 4-Step. 
 

The option price and the asset price at node ),( ji are given by jiCjiC ,],[   and jiSjiS ,],[   

respectively. The asset price could be computed from the number of up and down moves 

required to reach ),( ji from )0,0( and is given by 

(3.1.9)                                                                                     ).](0,0[],[ jiduSjiS   
 
The option prices at maturity (i.e., when tnT  are determined by the pay-off. For a call option 

(the intent to buy an asset at a previously determined strike price), the pay-off 

),0( ,, KSMaxC jnjn  and for a put option (the intent to sell) is given by ).,0( ,, jnjn SKMaxC 

The value K represents the strike price at maturity tnT  for a European-style option, and the 

strike price at any time be-fore or on maturity for an American-style option. To compute option 

prices, we apply the discounted expectations un-der the risk neutral assumption (see, [12]). For 

an American put option (for example), for :ni   

(3.1.10)                                      ).),(( 2,11,1,1, jijidjimjiu

tr

ji SKCpCpCpeMaxC 

 

 
 
whereas for a European call option (exercised on maturity only), for ni  , 
 

(3.1.11)                                       ).( 2,11,1,1, 

  jidjimjiu

tr

ji CpCpCpeC  

While option price starts at 0,0C , we apply the expression for jnC ,  along with Equations (3.1.9), 

and (3.1.10) or (3.1.11) to obtain the option price at every time step and node of the trinomial-

tree. We now model cloud resources based on the transient availability (a reserved quantity at 

a certain time )( 1nt may be unavailable at nt .) of the cloud compute cycles, the availability of 

compute cycles, and the value of volatility of prices associated with the compute cycles. Given 

maturity date t, expectation of the risk-neutral value )ˆ(E ; the future price )(tF  of a contract on 

cloud resources could be expressed as; 



(3.1.12)                                                  .)0()]([ˆ)( 0

)(


t

dr

eStSEtF


 
 

 Consider the cloud as a resource system with multiple resources (C3s) 

}3,,3,3{3 21 nCCCiC  where n is a finite number (the number of available cloud resources). 

To price the multi-resources system, we suppose a real option depends on some other variables 

such as the expected growth rate gcc  and the volatility respectively gcc . Then if we let 

(3.1.13)                                                    .333/3 iii dzCCCdC    

for any number of assets (cloud resources) of C3 such as )3,,3,3( 21 nCCC  with prices p 

),,,( 21 nppp   respectively, we have: 

(3.1.14)                                                ./ln iiiii dzdtpdpSd    
 
where the variables iC3 {the set of resources}. Applying the Option Pricing Factor (pof) for 
pricing options, we have: 
 

(3.1.15)                       ]. []ln)(3[ln termstochaticdtSfptCSd o 

  
where dz is the stochastic term. The strength of the pof is determined by the value of its 

membership function (high for 0fpo ). For a multi-asset problem, we have: 
 

(3.1.16)                                .|]ln)(3[ln ,,2,1 niiiioii dzdtSfptCSd    

The value of )(3 tC is determined such that )]([ˆ)( tSEtF  i.e., the expected value of S is equal to 

the future price, a scenario similar to what we may get is a user who suspects that he might need 

more compute cycles (bandwidth) in 3, 6, and 9 months from today and therefore decides to pay 

some amount, $s upfront to hold a position for the expected increase. We illustrate this process 

using a 3 step trinomial process. If the spot price per bit of bandwidth is Ts$  and the projected 3, 

6, and 9 months future prices are 21 $ ,$ ss , and 3$s respectively. In this scenario, the two 

uncertainties are the amount of bandwidth that will be available and the price per bit. However, 

we can obtain an estimate for the stochastic process for bandwidth prices by substituting some 

reasonably assumed values of pof and (e.g., pof = 10%; = 20%) in Equation (3.1.15) and obtain 

the value of S from Equation (3.1.16). Suppose jiV ,  represents the option values at l for 

1,,2,1,0  nl  level and j node for 3,2,1j (for a trinomial lattice only); i.e., 1,1V rep-resents 

the option value at level 1 and at pu. Therefore, the displacement for the node is ., jjlV  If there 

are displacements ,,
mu pp  and pd for ,, mu pp  and dp respectively, the expected future price for 

bandwidth is given as: 

 (3.1.17)                                                                .)]([ˆ ,,, nlnljl v

d

v

m

v

u epepeptSE   
  
where 1,,2,1,0  nl   and 3,2,1j . 

 
3.2    Fuzzy Logic Framework 
 

We express the value of the C3 flexibility opportunities as: 

(3.1.18)                                                                .: utn ttgcc   



where nt denotes the time-dimension and given as 10  nt and utt describes the corresponding 

utilization time. If 0nt , C3 usage is “now” or “today”, if ,1nt C3 has a usage flexibility 

opportunity for “the future” where future is not to exceed 6 months (for example). Users often 

request and utilize C3 at extremely high computing power but only for a short time for

.0 utn tt Therefore, disbursing the C3 on-demand and satisfying users’ quality of service 

(QoS) requires that the distributed resources be over-committed or under-committed for 1nt or 

0) respectively in order to satisfy the conditions specified in the service level agreements (SLAs) 

document. Such extreme conditions (for example, holding C3 over a long time) re-quires some 

cost in the form of storage. Therefore, we express utilization time nt as a membership function of 

a fuzzy setT . A fuzzy set is defined (see for example [13]) as: 

(3.1.19)                                                                      ].1,0[)(,|))(,(  tTtttT T  
 
Thus, given that T is a fuzzy set in a time domain (the time-dimensional space), then )( nT t is 

called the membership function of the fuzzy set T which specifies the degree of membership 

(between 0 and 1) to which nt belongs to the fuzzy setT . We express the triangular fuzzy membership function as 

follows: 
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Figure 3: Triangular Fuzzy Membership Function for C3 Utilization Time. 
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where [a, c] is called the universe of discourse or the entire life of the option. Therefore, for 

every C3 at utilization time nt , availability of the C3 expressed as member-ship function is the 

value compared to stated QoS conditions given in the SLA document. Figure 3 shows the tri-

angular fuzzy membership function for the cloud resources utilization corresponding to Equation 

(20). A Service Level Agreement [34] (SLA) document is an agreement between a service 

provider and a service consumer related to the service level (quality of service). Such an 

agreement can be reached by signing a formal and legally binding contract, or informally in case 

of different departments of a company using the services. This is referred to as an operation level 



agreement (OLA). In terms of quality, the SLA implies a mutual agreement with respect to 

security, priorities, responsibilities, guarantees, and billing modalities. In addition, the SLA 

specifies metrics such as availability, throughput, response times, and others. By nature, SLAs 

always consider the output side, i.e. they are drafted from the service consumers’ perspective. 

The implication of a service constraint that guarantees QoS and meets the specified SLA 

conditions within a set of intermittently available C3 is a system that compromises the basic 

underlying design objective of the cloud as a commercial computing service resource [35]. 

Therefore, Equation (3.1.18) becomes: 

(3.1.21)                                                     .|:3 SLAQoSnut ttC   
 
To satisfy QoS-SLA requirements, we apply a real options pricing scheme, which differs from a 

generic market-based resource sharing where all jobs are expected to receive some resource [36] 

based on the offered price or the application of demand and supply to set prices. Using the 

demand and supply economic market principles, the price of cloud resource tend to be higher 

than affordable. The reason is that since the resources exist as compute cycles and this makes 

availability hard to guarantee, supply could be low (most often) and low supply raises price 

where more us-age is expected. Hence economic market principles that are guided by demand 

and supply (equilibrium price) do not sufficiently support the general structure for pricing cloud 

commodities. 

 
4   Pricing Infrastructure 
 

Figure 4 shows our abstract representation of a cloud pricing infrastructure. Basically, our 

pricing infrastructure consists of four layers; cloud services layer, middleware layer, pricing and 

usage optimization layer, and the Internet layer. The cloud services layer houses the virtual cloud 

resources. The middleware layer integrates the pricing to the user applications that runs/utilizes 

the cloud resources. The Internet layer offers a user interface for querying cloud resources. 

Specific services available in the middleware layer include Resource Modeling (RM). The RM 

provides a description of the available resources, application capabilities, resource discovery, 

provisioning and defines inter-component relationships between the various clusters that 

comprise the cloud. Other functionalities of the cloud service layer include advanced monitoring 

and notification. The updates include notifications for changes in projected utilization levels and 

application notification regarding services changes. The price optimization layer executes the 

process of accounting and auditing and actually applies our pricing scheme to charge resource 

utilization. At this layer, services are price-based and they range from buying cloud compute 

commodities, such as bandwidth, processor cycles or memory to retailing computes time. The 

functions executed at the price optimization layer are user-application based. At this layer, 

several authenticated users log in to the cloud to assess compute commodities. The objective of a 

logged-on user is to gain access to the computing commodities as soon and quickly as possible 



for a small price while occupying the highest level of QoS as defined in the SLA. To achieve this 

objective, the Cloud Resources Broker (CRB) maps physical resources (requirements) onto 

virtual resources (the C3) while guaranteeing a service agreement between the QoS and SLA. 

 
 

5   Results and Discussions 
 

We start with analysis of the Amazon EC2 trace. Figure 5 shows the projected instance for 

2011 (01 January 2011 up until 31 December 2011).  

 

 

 

 

 

Figure 4: Cloud Resources Pricing Infrastructure. 
 
 

During these timeline, Amazon EC2 was expected to have sufficiently scaled at least 64 GB 

independent instances possible to support up to 13 million jobs. However, Statistics from Figure 

5 shows that a direct mapping of the projected statistics does not scale to realistic values. As seen 

from Figure 5, the actual capacity barely supports 5 million jobs with 16 GB of instances at one 

given time. This variation observed in the instance trace depicts that static charges in the cloud 

computing system does not favor the user. The user would not have to worry about future cloud 

resource usage if he paid an upfront value (i.e., if he entered into a usage agreement). To 

circumvent Amazon’s problem (of applying static 



 
 

Figure 5: Amazon: Scalable Instances Vs. Number of Jobs. 
 
charges), we introduced artificial spot prices for the C3 at various times of the contract period as 

exemplified by the trinomial tree structure of the solution space. As we mentioned earlier, from 

the date of signing the contract to the actual date of utilization (for European style option it is at 

maturity; and for American style option it is any time be-fore maturity) the price variation is due 

to various factors such as change in the demand on the cloud resources and change in 

technology. Based on these changed prices of the cloud resource commodities (in other words, 

the underlying assets for the option) the option values are computed using our model in Equation 

(3.1.10). 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 6: Effects of Time of Exercise on Cloud Compute Cycles: CPU Cycles (C31), Bandwidth 
(C32), Memory (C33), Throughput (C34), Disks (C35), Processors (C36). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7: Effects of Time of Exercise on Cloud Compute Cycles in the First Month. 

 

Further in our experiments, we simulate (run trinomial on CloudSim) the cloud compute 

commodities and obtain option values (prices) and study the variation in a space of 6 months to 

determine the effects of time of exercise on option value. Time of exercise here means the time 

at which the cloud compute commodities are going to be utilized, up to six months in the future. 

Figure 6 shows the effects of time of exercise on C3. The time of exercise (months) shows the 

time the user may wish to exercise the options. 

 

Figure 8: Effects of Time of Exercise on Cloud Compute Cycles in the Sixth Month. 
 
In the Figure, 1 month means the first after signing the con-tract, and 2 month means the second 

month after signing the contract etc. We isolate the first month and the sixth months in Figure 7 

and Figure 8 respectively for ease of comparison. We study some selected instances of C3 such 

as CPU cycles, memory, bandwidth, throughput, disk capacity, and processors. The effects of 

applying Option Pricing Factor 1)(  fpfp oo shows that at any given time, the cloud satisfies the 

users’ computing needs by granting computing requests at lower prices during off-peak demands 

for C3 so that users take advantage of the low prices and use more of the C3. The resource prices 

are increased during peak demand (to make more profits) period to provide all the avail-able 

resources at its full without compromising on the QoS. Changing the value of price varying 

factor fpo statically amounts to early exercise of an American option when a favorable situation 

arises for the user. This also means that the provider can benefit for certain values of fpo in 



which case the contract holder will not exercise early. That is, provider can execute the jobs of 

users willing to pay higher prices for the resources. Therefore, the original contract holder still 

has the time value on his/her option to exercise at a later date. This implies that both the user and 

the provider are availing the best opportunities for their benefits. In other words, the option 

pricing factor fpo helps in achieving the quasi-static equilibrium between the quality of service 

that the user requires and the profit level that the service provider would expect. Since the value 

of fpo is changed for a given experiment it is not dynamic. Changing the value of fpo

dynamically is bit complicated and we leave that that issue for a future work. Figures 9 and 10 

shows our results for the simulation of the American put and American call option. In these 

simulations, we show the effects of volatility on the option price. Figures 9 and 10 also 

demonstrate the effects of time of exercise on C3 computed from our model. 

 

 
Figure 9: Effects of Volatility on Option Value (American Call). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Effects of Volatility on Option Value (American Put). 
 
In our experiments, we run our developed trinomial lattice on American put option and 

American call option using some hypothetical values for 6,,2,1,0.100,0.100  TSK  

(months), 3,06.0 Nr  (for trinomial), NNdx j  ,2.0,2.0 . We vary  in steps of 0.1 i.e., 

7.0,1.0,0.0  . We obtain option values (prices) and study the variation in a space of 6 

months to determine the effects of fluctuations (i.e., volatility) value of the option computed and 

the time of exercise on option without fpo . We also compute option value for individual 

resources while applying fpo in the trinomial lattice. As an example, we simulate Random 

Access Memory (RAM), one of the C3-s and monitor users’ request for utilization. For a call 

option, we simulate the effects of time on exercising the option to use RAM. We use the 

following parameters: 2.0,24,16,8,4,06.0,5.0,10*00.941.6$ 7   NrTS and 



12  NN j .The price are base values that reflects existing cloud market value. Figure 11 shows 

the option value for RAM. The computed option values from our experiments are reasonably low 

com-pared to the static and fixed charges in Table 3 or the charges for cloud instances in Table 1 

and Table 2. The option value reaches a steady state as the number of step sizes increases. These 

option values take into account a balance between the QoS required by the users and a marginal 

profit level for the cloud service providers. We observe that as we increase the number of time 

step to 24 and above, the option value starts to maintain a steady value. We stop at this stage 

which indicates that we reach a value where the user can obtain satisfaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Amazon: Option Value for RAM Computed with pof varied between 0:0; ; 1:0. 
 

 

6   Conclusion 

 

In this paper we presented a proof of concept of the application of financial option for pricing 

instances of cloud resources. Our results have been validated by cloud market simulation 

middleware (cloudbus) using real trace data. A future line of work will focus on testing our 

proposed model in real cloud computing market environments. 
 

We have only examined the utilization traces from Amazon and Joyent for the sake of 

comparison in this paper. From the utilization trends in Joyent, the generic cloud problem – 

satisfying diverse and multiple requests and guaranteeing resources (non-storable reservoir of 

compute commodities) availability - persists. We designed and developed a pricing model that 

meets the users’ satisfaction guarantee with profitable outcome to the provider. We proved this 

with two real cloud nodes. Therefore, this paper has both academic and industrial 

value/contributions. Cloud economy, as a new emerging research area, presents several issues to 

be considered by a service provider as well as a user of cloud computing commodities – 

provision of virtual cloud resources that are in much demand and this meets expected level of 

user QoS. For the industry, our model and results would provide a novel approach for assessing 

the profitability of the cloud and would demonstrate the need to manage the cloud infrastructure 

in order to meet the peak load demand for cloud resources. 
 

We have assumed that the user will use only one of C3 at any time. However, in reality, a user 

would request for multiple commodities for their jobs – for example, while asking for compute 



cycles they would also ask for storage, memory, bandwidth and possibly some databases and 

soft-ware. This involves a combination of several instances and pricing them applies multi-asset 

financial pricing approach. A multi-asset pricing problem make the option to have multiple 

underlying asset. This paper can be extended for experimentation on such options with multiple 

underlying as-set. This is a very difficult problem. As a next step also, work is currently 

underway to integrate the model with automated resource managers for developing a smooth 

service and pricing system. 
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