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ABSTRACT 
 

In this paper , different methods of arriving at a reliable and authentic decision in hypothesis testing 

are discussed. The choice of the critical region, level of significance, testing equality of variances, 

maximum likelihood estimate and multinomial distribution are highlighted.  The test Statistic T  X of 

likelihood ratio test and its asymptotic approximation, – log2 T  X , are also carefully studied. Our 

study revealed that the proposed chi-square method  2∑  log(
  

  
) as against the conventional chi-

square ∑
      

  

  
 gives a better approximation of Likelihood ratio test ( -2log    ) . 

 

Keywords: Hypothesis testing, maximum likelihood estimate, likelihood ratio test, equality of 

variances, multinomial distribution, restricted MLE 

 

1.0 INTRODUCTION 

The method of maximum Likelihood was first introduced by Fisher [1].  Giving a collection 

of r observations each of which is normal with  population mean µ and population variance 
2 . We want to estimate µ and 

2 , where both are unknown.  The problem has been 

addressed in literature by several researchers [2-5].  In this paper a very simple 

example of inconsistency of maximum likelihood method is presented that shows 

clearly one danger to be wary of in an otherwise regular looking situation.  The 

discussion of this paper is centred on a sequence of independent, identically 

distributed and for the sake of convenience, real random variables, X1, X2, ..., Xn, 

distributed according to a distribution F(X| ) for some   in a fixed parameter space 
Ɵ. 

 

Various problems that will lead to a reliable and authentic decision in hypothesis testing shall 

be discussed and the choice of critical region testing, equality of variances, maximum 

likelihood estimate and multinomial distribution shall also be considered. 

 

2.0 DEFINITION OF TERMS  

Maximum Likelihood Estimate (MLE): A maximum likelihood Estimate 


  of parameter   

in the frequency function f(  ;  ) is an estimate that maximizes the likelihood function Ln( ) 

= ∏          
    that is, the parameter values that agree most closely with the observed data. 

 

Restricted / Unrestricted M.L.E:  

Let x  =  nxx ,,1   be a sample drawn from a particular distribution whose probability 

density function  is a function of parameter . We say 


  is restricted MLE of   if and only if 


  subjects to some particular conditions (restriction), otherwise it is an unrestricted MLE of

 . 
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PROPERTIES OF MLE (ASYMPTOTIC) 

- Under regularity conditions, maximum likelihood estimates are consistent. 

- Under regularity condition, MLE is asymptotically normal with 
^

  (asymptotic 

unbiasedness) and variance equal to the crammer – Rao  Lower  bound [6]. 

- x

n , the MLE of   based on sample of size n is weakly consistent that is, converges in 

probability to   as  n tends to infinity provided that  ;xf  is such that  

E  
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2.1 LIKELIHOOD RATIO TESTS 

The method of maximum likelihood estimate discussed earlier in 1.0. is a constructive method 

of obtaining estimators which have desirable properties under certain conditions earlier stated. 

Likelihood ratio test is a testing procedure closely allied to MLE. This method was proposed 

by Neyman and Scott [2] . In the case of simple null hypothesis H0 and alternative hypothesis  

  , a likelihood ratio test is often most powerful.  

 

The procedure of the likelihood ratio test (LRT) applies to the testing of hypothesis.  

 

Suppose that the family   Wxf  ,;  of probability density function of a random 

variable X is defined. If we intend to test the hypothesis H0:  W against the alternative    

 HI:   W . 

 Where W and W  are the distribution under    and    respectively.  
 

The procedure is formulated as follows:  

     

 

 

W

xSUPf

W

xfupS

XT














;

;

                     (1)

 

The distribution of T  X  under the null hypothesis must be determined using the above test 

procedure. 
 

Example 1 

Let  nxxX ,.,1   be a random sample from normal distribution  

N   22 ,,  and  are both unknown. To Test the hypothesis; H0:   0    against  

        H1:  0   

Considering the Normal distribution,  Let 

   
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
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



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n

                                                (2)                               

Under H0; 
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f         





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Now taking the logarithm of the likelihood function in (3 ) and maximizing with respect to 

, the maximum likelihood estimate 


2   of 2  will be  

     


2

0

22 1  xnxxi
n

                  (4)

            

                                         

                                          

Similarly, 

Under H1 
 

  
 22 1. xx

n i                                                                  (5) 

  

By substituting x


  where 


  represent the maximum likelihood estimate of µ. 

and putting (4) and (5) into (1), we get  
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 Putting  (4) and (5) into (6), yields 
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Which is equivalent to 

  
  22 1/1

1
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where 

t =     















  1//

2

0 nxxxn i  

Thus we accept H0 if T   X k 

 

Since  XT  is a monotonic decreasing function of t
2
, H0 is rejected if t

2  k
1 
or equivalently if kt   

 

Example 2 

Let x1, ……………, xn be a random sample from normal distribution N( , 1). We wish to test the 

hypothesis  

  H0:   =  0 against  

  H1:     0 

 

Considering the normal distribution with mean   and variance of 1, the density function is 
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 f(x ; ( ) = exp    2/
2

1 2
 x  

 L0f(x ; ( ) = exp     2
2

2/
2
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Under H0 
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 W  

Upon simplifying this it becomes  

      T( )      =    exp   2

02
 xn                                                                   (9)

       

Thus 5% critical region for the likelihood ratio test is equivalent to the two equal tails of the X  

distribution given by the familiar inequality 96.10  nX   

 

Example 3 Testing Equality of Variances  

Let x1, x2, .. xk be k independently normally distributed variables with k 21 ,  means and 

variances  
k

k ,,, 2

2

2

1  . Let random sample of sizes n1, , nk be drawn from those populations 

and let the hypothesis to be tested be  

 H0: 
22

2

2

1 .. k   

 H1: 
k

k  2

2

2

1  

The random variable corresponding to the j
th 

observation for the variable xi is represented by xij. Thus, 

there are nn
k

i

i   random variables.  

 

Considering the Normal distribution function with parameters µ and 
2  as follows 
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Where      denotes the common value of all    
 

 when the null hypothesis is considered. 

  

Similarly, 

Under H1 
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Maximizing (11) with respect to the parameters µi and  i,  the resulting expression will give 
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respectively. Where  
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Where L0 and L1 represent  the likelihood functions for null and alternative hypotheses respectively . Which 

reduces to 
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3.0     Large – Sample Approximation  

3.1 Application of Large-sample approximations 
           We shall state the Cramer theorem without proof. 

          Theorem: Cramer [7] 

Subject to regularity conditions necessary for asymptotic results for maximum likehood 

estimates, the likelihood ratio statistic T  x  for testing 

 H0: W:   0r  against the alternative  

 H1: 0: rrw    (where r stands for restriction imposed on  

Parameter   is such that as the sample size n becomes very large (i.e.    ),  

- 2  XTlog  is asymptotically Chi – square with r degrees of freedom for all  W . We 

now apply the theorem as follows: 

 

By taking the logarithm of both sides of (7), the expression becomes 

- 2logT   ( )      [          
  ∑         ]                           (15) 

The test statistics approximate to 
2  table of critical values. The critical value say C0 

depends on the degree of freedom r and level of significance  chosen (r stands for the 

number of restrictions imposed on the parameter. 

 

If the calculated value is greater than the value C0; we reject the hypothesis H0. 

Recall (9) from example 2 and taking logarithm of both sides, we obtained 

  - 2logT( )              
           (16) 

 

For the sample size n, x  being the mean of the observations and given the value of 0 ; we 

reject H0 if table value say C0 degree of freedom r and level of significance  is smaller than 

the calculated value of - 2log T(  ) 

 

Recall from example 3.That  

T(   )   in  (14) can be reduced to   2
1

22

1

nk

i
ss


  and taking the logarithm of both sides, 

we have, 

-2 log T(x) =   22 loglog snsn iii                 (17)

   

The value on the R.H.S. is equally computable since we know that  
k

i nn  

   iiiji nxxs /
22    

And s
2 
=   nsn ii /2

 

Then, the value thus calculated is compared with the critical value from the 
2  table with 

known degrees of freedom r and level of significance     We reject H0 if the calculated value 

is greater than the table critical value.  
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3.2 Approximation of – 2Log T( X ) to Chi – Square Statistics:  

3.2.1 Multinomial Case: 

Considering the multinomial distribution 

  ns
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                                                            (18)
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The likelihood function of (18) gives 
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       By taking the logarithm of both of sides, the expression becomes   
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Then generalizing and maximizing (19) with respect to i we have 

n
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i 


  for any i such that 1≤ i ≤ s. Thus 


i is MLE of   for a multinomial 

distribution 

Again, 
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 By taking the logarithm of (20) and using the theorem by Cramer (1946), we have  

– 2  
i

i
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i

i E
XT

0
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
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Thus, expanding (22) , using maclaurin series gives 
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By substituting (23) into (21), the resulting expression yields 
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 
 

 


 2

2
0

2 log 
i

ii

E

E
XT

                                                                       (24)

 

We therefore concluded that  

 
 





i

ii

E

E
xT

2
0

2 log  Subject to some conditions as stated in (25) , where    

is the observed frequency and Ei is the expected frequency 

  

 

 

3.3 Conditions for Approximation 

According to Perlman [8] and Rice [9], the series in (23) converges if and only if 

   1
0




i

ii

E

E
                 (25) 

And Oi > 0 or  Oi < 2Ei.  

It follows that  

   

 - 2 log T(X) =  2
i

i
i E

0
0 log , should be used instead of  
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



i

ii

E

E
2

2 0
  

Since  

-2
i

i
i E

0
0 log  is computationally convenient and valid for all values of 0i and Ei. 

This statistic should replace  the conventional Neyman – Pearson’s Statistic. 

 

  
 




i

ii

E

E
2

0
 which is valid only if ii E20   

If this condition does not hold for even one cell, it should not be used.  

 

3.4 Conclusion 

Whenever the conditions for regularity are satisfied and the sample size n is a large one, the  

approximation - 2log T(x). to 
2 can always be used.  

 

This “large – sample” approximation proves very helpful for easier determination of critical 

region (critical value) especially when we do not know the distribution of the test statistic and 

this critical value is needed for the decision making. 
 

Moreso, since -2log T(x) approximates to 
2 (r) (r stands for restrictions imposed on 

parameter) the critical value with a fixed level of significance  , r degrees of freedom is read 

from the 
2  table, thus we reject H0 if the value computed from the test statistic   -2log

T(x) is greater than the table value, otherwise we do not have any basis to reject H0.  
 

For multinomial distribution 

 -2 log T(x) = 2   iii EOO /log  

should be used instead of  
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 





i

ii

E

EO
2

2  

Since 2   iii EOO /log  is computationally convenient and valid for all values of 0i and 

Ei. The statistic should replace the conventional Neyman – Pearson’s statistic  

   `

2
/ iii EEO  which is valid only if 0i < 2Ei. 
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