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                  Abstract 

 This paper proposes a new method of bias reduction from order 1n  to order 2n  resulting in a new 
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1.0 Introduction 

 Over the years survey samplers  [1 -7] among many others  have been interested in methods of improving the 

precision of the estimates of population parameters both at the selection and estimation stages by making use of 

auxiliary information. Ratio estimators are often employed by these samplers to estimating the population mean 

of the characteristic of interest of the population ratio. 

      Let y and x be real variates taking y i  and x i  (1  i   N) for i th  unit of   a population    

      of Size N with means μ y  and µ x respectively. Suppose that a simple random sample of size n   

     units is drawn without replacement from the population. A commonly employed estimator in  

     this context is traditional or classical ratio estimator  r=
x

y
 where y  and x  denote the sample  

     means of y and x values, respectively. 

 2.0 Approximately Unbiased Ratio Type Estimators 
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    Generally, the classical ratio estimator(r) is biased; therefore, many authors [3-5, 8] and others have 

attempted to reduce this biasness in a situation where freedom from bias is important. Many authors [3-5], had 

also, worked on adjusting the classical ratio estimator by the term that is capable of reducing it from order n
-1

 to 

order n
-2

 to attain small or moderate gain in efficiency. Several ratio type estimators which satisfy this criterion 

are called approximately or almost unbiased ratio type estimators. 

    The following approximately unbiased ratio estimators in the literature [2 - 5] and others are considered for 

comparison.  

Pascual [1] came up with the approximately unbiased ratio estimator: 

Y p =   r  +
Nn

xryN

)1(

))(1(




                                                      (2.1) 

     This estimator has been shown to be efficient as that of combined bias ratio estimator in stratified sampling.  

Beale [2] proposed another approximately unbiased estimator of order 0(n 2 )   as                                                         

           


R )1/()1()1/()1( 2

2

2

Xxy
Xxy

B CCR
x
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yx

S
R  



                                  (2.2) 

  

   Tin [3] derived another approximately unbiased ratio estimator closely related to that of Beale [2] which was 

called    

     Modified ratio estimator, defined as   



R )(1()(1 2

2

2

XXY
xxy

T CCR
x

S

yx

S
R 












                                                (2.3) 

    , where 

   

Sxy = 
1

1

n
 



n

i 1

( ix – x ) (y i  – y ),                                                              (2.4) 

 

 S
2

x/ x
2
= C

2
x                                                                                                   (2. 5) 

    

   

S
2

x =  
1

1

n



n

i 1

(x i  – x  )
 2   

                                                                             (2.6) 

 

Sxy/( y x )= Cxy                                                                                                    (2.7) 
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And 
Nn

11
                                                                                                 (2.8) 

 



R B and 


R T    have the same variance to order 0(n 2 ). 

 

    Sahoo [4] proposed another approximately unbiased ratio estimator termed almost unbiased ratio estimator, 

defined as 

          


SR  


R / [1 + θ (C
2

x - Cxy)]                                                                         (2.9) 

      It is said to be more efficient than 


R B and 


R T.         

      Sahoo [5] further derived a class of almost unbiased ratio estimators, among which we have the following as 

its members: 

       1sR


= 


R  ( xyC1 ) ( 21 xC )                                                                        (2.10)  

       


2sR  


















xy

x

C

C
R





1

1 2

                                                                                     (2.11) 

 

 

       


3sR
 )1)(1( 2

xxy CC

R

 



                                                                           (2.12)    

 

3.0 THE PROPOSED METHOD OF BIAS REDUCTION: ALTERNATIVE TO APPROXIMATELY 

UNBIASED RATIO (AAUR) ESTIMATORS 

The proposal of this estimator was based on the following standard regularity conditions:  

     Let v =(Cxy,C
2

x) assume values in a bounded, closed convex subset, S, of two dimensional real spaces 

containing the point V = (Cxy, C
2

x). 

     Let f (v) be a function of v (which in particular may be a polynomial in (Cxy, C
2

x) satisfying the following 

conditions: 

(a) The function f(v) is continuous and bounded in S 

(b) The first and second order partial derivatives of f (v) exist and are continuous and bounded in S. 
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(c) After expansion under the given conditions, we get 

                            f(v) = 1+ (Cxy-C
2

x) + 0(v- 
2
) 

Then, we have the following theorem: 

Theorem: If f(v) is differentiable in Cxy and C
2

x  and fulfils the above regularity conditions then 


R * = 


R f (v) is 

an asymptotically  unbiased ratio estimator.        

 

The unbiased ratio estimator proposed is


R A =


R [1- ( Cxy  + C
2

x)]                             ( 3.1)                                                                             

                                                                                                                                                                              

where   Sxy, S
2
x/ x

2
, S

2
x, Sxy/ y x  and   are as defined in equations (2.4) to (2.8)                             

Conventionally, R n  = 
n

n

x

y
is taken as a biased estimate of R N =   

N

N

x

y
, since both y n  and nx  are unbiased 

estimates of y N  and x N  respectively.  

Proof: 

Let R n  =   
n

n

x

y
                                                                                                         (3.2)  

  y n  = R n x n                                                                                         (.3.3) 

R N  =   
N

N

x

y
 =   

)(

)(

n

n

xE

yE

                                                                                        (3.4) 

Substituting (3.3) in (3.4 ), we have  

R N  = 
)(

)(

n

nn

xE

xRE
                                                                                                      (3.5) 

Now 

Bias in R n  = )( nRE R N                                                                                        (3.6) 

B(R n ) = )( nRE  
)(

)(

n

nn

xE

xRE
                                                                               (3.7) 

That is 
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B(R n ) = {E (R n) E ( x n) - R n x n  }/E ( x n )                                                        (3.8) 

since the negative covariance between R n  and 
x n   = E (R n) E ( x n) - R n x n  and  E ( x n ) = x N , then 

B(R n ) = - 
N

nn

x

xRCov ),(
                                                                                        (3.9) 

Obtaining an upper bound to (3.8), we have 

Bias in nR    
n

XR

x

nn


  = 
nR

Nn

nN 
XC                                                        (3.10) 

Where C x  = 
N

x

x

S
 is the coefficient of variation of x and 

nR  and 
nx

  are the standard errors of Rn and xn 

respectively. 

From (3.10) above, we can see that if n is sufficiently large, the bias in the ratio estimate R n  is negligible as 

compared to its standard deviation. 

Let y i  = y N  + i                                                                                                   (3.11) 

So that 

ny = y N  + n                                                                                                   (3.12) 

Where  

E ( n ) = 0 and E ( n
2 ) = (1-f) 

n

yS 2

                                                                      (3.13) 

Similarly, 

Let       x i = Nx  + 


 i                                                                                            (3.14)  

So that nx  = x N  +  ni
                                                                                        (3.15) 

where 

E ( n *) =0 and   E ( n * 2 ) =   (1-f) 
n

S x
2

                                                             (3.16) 

To obtain the expected value of R n , it is convenient to express it in terms of  n and  n* we have 
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R n  = 

)1(

)1(

N

n

N

N

n
N

x
x

y
y







                                                                                                     (3.17) 

It is assumed that nx    0 ,   Nx    0  ,  Ny    0 and  
N

n

x


 < 1 so that we may expand 













 


N

n

x

*
1

1  

Using Taylor’s series expansion in powers of  n*, and expanding and multiplying out, we have                                                                      

 R n = R N



 


N

n

y
1 - 

N

n

x

*
+ 

N

n

x2

2
*

- 
N

n

y



N

n

x

*
+

N

n

y


2

2*

Nx


- 

N

n

x3

3*
+

N

n

x4

4*
-

N

n

y



3

3*

N

n

x


+…   

                                                                                                                                     (3.18) 

Now taking the expectation of (3.18) term by term we obtain, 

E ERRR NNn .)(   
N

n

x2

2
*

- 
N

n

y



N

n

x

*
+

N

n

y


2

2*

Nx


- 

N

n

x3

3*
+

Nx4

4*
-

N

n

y



N

n

x3

3*
+… …        

                                                                                                                                     (3.19) 

neglecting terms in n   and  *n  higher than the second term i.e. n
2*n , n

3

* , n
3*n   

This approximation gives 

E












 





NN

nn

N

n

NNn
xy

E
x

E
RRR

*)()*(
)(

2

2

                                                                (3.20) 

=




















 


N

x

N

y

N

x

N
x

S

y

S

x

S

Nn

nN
R 

2

2

1  

= )(1
2

CxCyC
Nn

nN
R xN




 
                                                                                  (3.21) 

Where C
N

x
x

x

S
   and C

N

y

y
y

S
  

 E [ R n ] = R N  [1 +  (C 2
x   -  C xy ) ]                                                                      ( 3.22 ) 
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Now, following the approach of Tin [3] in equation (2.3), by adjusting equation (3.22) for bias and by 

subtracting an estimate of the bias from E [R n] , 

we obtain the estimator: 



R A = E [R n] -2RN θC
2

x                                                                                    (3.23) 



R A = 


R  [1 +  (C 2
x   - C xy )] -2RN θC

2
x 




R A =


R  [1-  (CXY +C
2

X)]                                                              (3.24) 

 

4.0  DERIVATIONS OF THE MEAN SQUARE ERROR FOR THE ALTERNATIVE UNBIASED 

RATIO TYPE ESTIMATOR UNDER THE REGRESSION MODEL:                                                                                                                                                                                                                                                                         

                                                                                                                                                                                                     

        yi  = βxi + ei    , , i = 1,2,…,N.                                                                        (4.1) 

    where β is unknown real constant and ei’s are random variables  with the following conditional expectations: 

 E (ei/xi) = 0                                                                                                      (4.2)                                                                                                                                                      

E (e 2

i /x i  ) =  x t

i   ,                                                                                         (4.3)          

    With  

   > 0,                                                                                                           

  0     t  2.                                                                                                    (4.4)       

and   E ( eiej  / xixj )= 0 , i j.                                                                        

It is also assumed that x has gamma distribution with parameter k as often encountered in real life survey 

situations. 

Now, assuming (4.1), we have 

       μ x = k;  μ y = βk ;  R =β;  y  = β x  + e    and   Sxy = β s 2

x + s ex                                (4.5) 

Where  
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 e  = 
n

ei
 ;   and  s ex  =  

1

)(




n

xxe ii
                                                         (4.6)            

 

Let E (./x) and Ex (.) denote respectively the expectation operators for given x and with respect to the 

distribution of x, so that E (.) = Ex (E (. /x)) denoting the mean square error for R i      as MSE (Ri )  under this 

model , we have  

            MSE (Ri) = E (Ri- β)
 2   

 = Ex[E (Ri- β)
 2 

 /X i ]    i = 1,2, …,8.                                (4.7)        

 Let  Zi   =
t

ix  so that we have  

                E (z) =   Z   =
)(

)(

k

tk




                                                                                  (4.8)                                                                              

               E (e2 /x   )   =  
n


Z                                                                                       (4.9)              

                E (  e  Sex / x) = 
n


S zx                                                                                  (4.10)                                                                                    

  and   

              E(S 2

ex  /x) =   
n


q.                                                                                             (4.11)                                                                                                              

Where  

            Z =  
n

Z i
 ; Szx =  

1

)(




n

xxZ ii
 and  q =

2

2

)1(

)(




n

xxZn ii
.                             (4.12)                                                               

Considering (1.13) and the regression model 

       y  = β x  + e                                                                                                (4.13)                                                                                     

We have          

 β =  
x

ey )( 
                                                                                                        (4.14)                                                                       

and  

Sxy = β s 2

x + s ex                                                                                                    
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  Sxy = [
x

ey )( 
] s 2

x + s ex                                                                                        (4.15)                 

Now, substituting directly into the regression model and expanding under the assumptions and approximations 

Tin [3], we obtain, 

MSE (Ri) = E (Ri- β) 
2
   = Ex [E (Ri- β) 

2
 /x]                                                          (4.16)                                           

For Ri =


R A, we have,      

        2)( 


AR  =  22 ))(1(   Xxy CCR  = 

2

2

2

][)1(













x

e

x

y

X

S

yx

Sxy

x

y X  

                              = 

2

3

2

2













x

e

x

y

x

S
y

x

Sxy

x

y X  = 

2

3

2

2













x

e

x

S
y

x

Sxy X                     (4.17)                                   

  Substituting for Sxy   , we obtain, 

2)( 


AR  =

2

3

2
2

2
])[(










x

S
yss

x

e

x

y

xx

e x
exx 


                                                    

 

             =

2

3

2

2

2

3

2

3









x

S
ys

x
s

x

e
s

x

y

x

e x
exxx 


  =

2

3

2

2

2

3
2










x

S
ys

x
s

x

e

x

e x
exx 


  

            = 

2
2

22

2

]2[]1[









x

S
ys

xx

s

x

e x
ex

x 
                                                                (4.18) 

Recall as N tends to infinity,  becomes
n

1
, then 

2)( 


AR =

2
2

22

2

]2[
1

]1[









x

S
ys

xnxn

s

x

e x
ex

x =

2

3

2

2

2

3

2
1















xn

S
ys

xn
s

xn

e

x

e x
exx                                                                                                             

   =
2

2

x

e
+ 

4

2
2

xn

s
e x - 

3xn

s
e ex  +

4

2
2

xn

s
e x  +

62

22
2 )(

xn

s
e x  -

52

2

xn

s
se ex

x - 
3xn

s
e ex - 

52

2

xn

s
se ex

x +
42

2

xn

sex  + terms involving y’s. 

   =
2

2

x

e
+2 

4

2
2

xn

s
e x - 2

3xn

s
e ex   +

62

22
2 )(

xn

s
e x  -2

52

2

xn

s
se ex

x  +
42

2

xn

sex  + terms involving y’s. 
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   =
2

2

x

e
- 

n

2
 [

3x

s
e ex -

4

2
2

x

s
e x ] + 

2

1

n
[

4

2

x

sex  -2
5

2

x

s
se ex

x +
6

22
2 )(

x

s
e x ] + terms involving y’s          (4.19) 

                                                                                                                                  

Substituting the (4.9), (4.10) and (4.11) in (4.19) we obtain, 

             E [( 2)( 


AR /X] =  
2xn

z
 -

2

2

n












4

2

3 x

s
z

x

s xzx  + 
3n












6

22
2

54

)(2

x

s
zs

x

s

x

q x
x

zx           (4.20) 

Applying the well known Taylor’s series expansion method, we have,   

               E X ( 
2x

z
)=

2k

Z
)(

39723
1 3

22

2

2222









 no

kn

t

kn

t

knnk

t

nk
                            (4.21)     

               E X (
3x

szx  -
4

2

x

s
z x )=

2k

Z










2

2

22

4621

nk

t

nk

t

nkk

t

k
+o(n 2 )                              (4.22)      

               E x (
4x

q
) =

4k

Z   )( 12  nottk                                                                       (4.23)      

               E X (
6

22 )(

x

s
z x ) = )( 1

4

 no
k

Z
                                                                              (4.24)        

and 

              E x ( 2

5
x

zx s
x

s
)= )( 1

4

 not
k

Z
                                                                                  (4.25)       

Now, the Mean Squared Error is given by:  

        E [ 2)( 


AR /X] =  
2xn

z
 -

2

2

n












4

2

3 x

s
z

x

s xzx  + 
3n












6

22
2

54

)(2

x

s
zs

x

s

x

q x
x

zx   

        =
2nk

Z










22

2

2222

39723
1

kn

t

kn

t

knnk

t

nk
-

22

2

kn

Z










2

2

22

4621

nk

t

nk

t

nkk

t

k
       

             +
43kn

Z  2ttk 
43

2

kn

Zt
+

43kn

Z
 = 

43kn

Z  kttnktnkkn  222 12221245            (4.26) 

Thus,                                           

          MSE (


R A) =
43kn

Z  ktttnknknk  22)1(12)1(4)1( 2
                                  (4.27)                           
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Similarly, the mean square errors of all the estimators are shown below: 

         MSE (


R B) =
43kn

Z  2)1(4)1( 2  tknknk                                                         (4.28) 

          MSE (


R T) =
43kn

Z  ttknknk 2)1(4)1( 2                                                       (4.29)   

          MSE (


R S) =
43kn

Z  ttknknk 2)1(4)1( 2                                                          (4.30)                                                  

          MSE (


R S1) = 43kn

Z  )1(4)1( 2tknknk                                                              (4.31)                                               

           MSE (


R  S2) = 43kn

Z  )12(2)1(4)1( 2  ttknknk                                           (4.32)                              

           MSE (


R  S3) = 43kn

Z  )12(2)1(4)1( 2  ttknknk                                           (4.33) 

5.0   CONDITION UNDER WHICH 


R A IS BETTER THAN THE EXISTING ESTIMATORS 

     We intend to establish the conditions under which our proposed estimator is better than the existing 

estimators [2-5]. In comparison of two estimators e1 and e2, when V (e1) < V (e2) or   MSE (e1) < MSE (e2), 

then, e1 is better than e2. Hence, in order to establish the conditions when 


R A is better than other existing 

estimators [1-5], we compared the mean square errors of our alternative estimator with the existing ones. 

   Past researchers [9-11] have shown that 


R S1 is better than others; therefore we compared the mean square 

errors of 


R A and 


R s1.                                                

   In our comparison it was discovered that MSE (


R A) < MSE (


R s1) whenever, 1 < t   2.0 and n k > 8 

                                                                                                                                                                                                                                                  

6.0 EMPIRICAL INVESTIGATIONS                                                                              

  In this section, an empirical study is carried out using a Monte Carlo technique to compare the performance of 

our alternative unbiased ratio estimator along side with the classical one. We shall be considering the usual 

model for ratio estimator yi =βxi + ei , i = 1,2,3,…,N.  
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 This work shall be viewed from the angle of real life situation which is always encountered in sampling 

practice by assuming that the auxiliary variable x follows a gamma (i.e. skewed population). 

       The approximately unbiased ratio estimators shall be compared under the following assumed model:  

 

 the regression of y on x is linear i.e, y = α + βx + e with x having a gamma distribution with parameter(2, 1) 

,that is, xi  ~  G(2 , 1)and e having a gamma distribution with parameter (0.25, 1), that is, ei ~ G(0.25xi  , 1.0  ). 

Under varying values of intercept (α) = 0, 0.5, 1.2. 

 We considered the simulation of Variance, Bias, mean square error (MSE) and efficiency of the proposed   

alternative approximately unbiased ratio estimator (


R A) along side with that of   (


R s1) which has been 

established to be the best in previous studies [9-11] 

    We shall consider the values t = 1, 1.5. 2.0 For n = 20, 40, 100, 200 and k = 2 under the regression model.    

   (i) For t = 1, we have, 

                              yi  =  0.25xi   +  ei ;  ei ~ G(0.25xi  , 1.0  );  xi  ~  G(2 , 1).                                               

   (ii) For t = 1.5, we have, 

                    yi  =  0.25xi   +  ei  xi ; ei ~ G(0.25  xi  , 1.0  );  xi  ~  G(2 , 1).                                   

  (iii) For t = 2.0, we have, 

                             yi  =  0.25xi   +  ei xi;  ei ~ G(0.25  , 1.0  );  xi  ~  G(2 , 1). 

Table 4.1:  Simulations for t = 1 

EST N Variance Bias MSE 

RS1 20 0.02229141 0.4957136 0.26802338225 

RA 20 0.02035064 0.4512071 0.2239384870904 

RS1 40 0.01163586 0.4911259 0.25284050965081 

RA 40 0.1121222 0.4682516 0.33138176090256 

RS1 100 0.00477786 0.5061191 0.2609344033848 

RA 100 0.00471523 0.4985879 0.25330512402641 

RS1 200 0.001758906 0.5378979 0.2910930568244 
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RA 200 0.001743158 0.534885 0.287845121225 

 

Table 4.2:  Simulations for t = 1.5 

EST N Variance Bias MSE 

RS1 20 0.05887116 0.5420939 0.35273695641721 

RA 20 0.04969045 0.4892565 0.289070690225 

RS1 40 0.01163586 0.4911259 0.25284050965081 

RA 40 0.01121222 0.4682516 0.2304717809026 

RS1 100 0.00477786 0.5061191 0.26093432938481 

RA 100 0.00471523 0.4985879 0.2533051240264 

RS1 200 0.003271526 0.80595569 0.6528361002433761 

RA 200 0.003247954 0.8021401 0.646676694028 

 

Table 4.3:  Simulations for t = 2.0 

EST N Variance Bias MSE 

RS1 20 0.01470531 0.3578919 0.14279192208561 

RA 20 0.0151919 0.3350565 0.1274547581923 

RS1 40 0.00531964 0.3857655 0.15413466099025 

RA 40 0.005348987 0.3753843 0.1462623596865 

RS1 100 0.002499927 0.3738429 0.14225844088041 

RA 100 0.002493612 0.3699303 0.1393420388581 

RS1 200 0.0006446923 0.364413 0.133441526869 

RA 200 0.0006427695 0.3626546 0.1321611284012 
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CONCLUSION: The simulations results in this study have confirmed that 


R A   estimator is better than the 

existing ones [6-8] in terms of the bias and MSE whenever 1   t   2.0 and n k > 8. 
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