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ABSTRACT 

 

 Calculated Total Cross-Sections (TCS) of elastic electron-atom scattering for the 

noble gases He, Ne, Ar, Kr, Xe and Rn are presented. The computed TCS were 

calculated using the partial wave, Eikonal, Born, and the optical theorem 

approximation methods with the Lenz-Jensen potential, at electron incident 

energies between 1to1000 eV.  Results obtained using the partial wave, Eikonal 

and optical theorem approximation methods are in good agreement with 

experimental TCS data. 
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INTRODUCTION 

In scattering theory, the Total Cross-Section (TCS) is a measure of the probability 

that an interaction occurs; the larger the cross section, the greater the probability 

that an interaction will take place when a particle is incident on a target [1]. 

Elastic electron-atom scattering takes place if the final state of an atom after the 

interaction coincides with the initial one [2]. Total and differential cross-sections 

for such a process can be calculated in various approximations — Born [3], 

Eikonal [4,5], optical theorem [6,7]  partial wave method [8] etc. In this work, the 

total cross-sections of the noble gases He, Ne, Ar, Kr, Xe and Rn [9,10] were 

computed using the four approximation methods listed above.  

MATERIALS AND METHODS 

We used the FORTRAN code program developed by [11] which takes the 

relativistic differential cross-section as a sum of squared modules of the real and 

imaginary scattering amplitudes. The amplitudes can be calculated through the 

phase shifts of spherical waves, which are obtained by integration of equations for 

radial wave functions. In these computations the analytical approximation for the 

atomic electrostatic potential given by Lenz and Jensen, called the Lenz-Jensen 

potential [12], based on the Thomas-Fermi model, is used. 

Scattering Theory 

For particles of mass m and energy  
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 scattering from a central potential, V(r) is described by a wave function, ψ(r) that 

satisfies the Schrodinger Wave Equation (SWE) 
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with the boundary condition at large distance 
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Equation (3.0) holds for a beam of electrons incident along z-axis, and the 

scattering angle,   is the angle between r and  ̂ while   is the complex scattering 

amplitude, which is the basic function we seek to determine. The differential cross-

section is given by: 
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The total cross-section is  
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  is a function of both   and   [11].  

 

Approximation Methods 

Approximations play a very important role in our understanding of processes that 

cannot be solved exactly. The calculation of scattering cross sections is one of the 

most important uses of Fermi’s Golden Rule [13]. Fermi’s rule involves only one 

matrix element of the interaction which makes it a first order approximation to the 



exact result. This approximation suggests an approximation to the complex 

scattering amplitude.  

The Born approximation involves an approximation to the complex scattering 

amplitude [3]. It has been extensively used to study low energy as well as high 

energy scattering processes.  The Eikonal approximation is a technique for 

estimating the high energy behaviour of a forward scattering amplitude [4]. It was 

originally developed for potential scattering in quantum mechanics, where one 

approximates the classical trajectory corresponding to forward scattering by a 

straight line and uses a WKB approximation for the wavefunction [14].  The 

optical theorem relates the forward scattering amplitude to the cross section [6].  

Partial Wave Method  

The method of partial wave expansion is a special trick to simplify the calculation 

of the scattering amplitude,   [15]. The standard partial wave decomposition of the 

scattering wave function   is 
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When equation (2.6) is substituted into the SWE (2.0) the radial wave functions,    

are found to satisfy the radial differential equations:  
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This is the same equation as that satisfied by a bound state wave function but the 

boundary conditions are different. In particular,   vanishes at the origin, but it has 

the large-r asymptotic behaviour  
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 Where    and    are the regular and irregular spherical Bessel functions of order  .  

The scattering amplitude is related to the phase shifts    by [9]: 
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From equations (5.0) and (9.0) the total cross-section is given by  
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 Although the sums in equations (9.0) and (10.0) extend over all  , they are in 

practice limited to only a finite number of partial waves. This is because for large  , 

the repulsive centrifugal potential in equation (7.0) is effective in keeping the 

particle outside the range of the potential and so the phase shift is very small.  

If the potential is negligible beyond a radius     , an estimate of the highest partial 

wave that is important is had by setting the turning point at this radius: 
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This estimate is usually slightly low since the penetration of the centrifugal barrier 

leads to non-vanishing phase shifts in partial waves somewhat higher than this 

(Koonin & Meredith, 1989).  

The Phase shifts  



To find the phase shift in a given partial wave, we must solve the radial equation 

(7.0). The equation is linear, so that the boundary condition at large  

  can be satisfied simply by appropriately normalizing the solution. 

If we put   (   )    and take the value at the next lattice point,   (   ), to 

be any convenient small number we then use 
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for   
 ( ), along with the known values   ( ),   ( ), and  ( ) to find   (  ).  

Now we can integrate outward in   to a radius  ( )      . Here,   vanishes and   

must be a linear combination of the free solutions,     (  ) and     (  ): 
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 Although the constant,   above, depends on the value chosen for  (   ), it is 

largely irrelevant for our purposes; however, it must be kept small enough so that 

overflows  are  avoided. Now we continue integrating to a larger radius  ( )  

 ( ): 
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Equations (14.0) and (15.0) can then be solved for    to obtain 
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where   
( )
   (  

( ) etc. Equation (16.0) determines    only within a multiple of 

  but this does not affect the physical observables [see equations (9.0) and (10.0)]. 



The correct multiple of  ’s at a given energy can be determined by comparing the 

number of nodes in   and in the free solution,      which occur for       . The 

phase shift in each partial wave vanishes at high energies and approaches     at 

zero energy, where    is the number of bound states in the potential in the  ’th 

partial wave [11].  

 

The Lenz-Jensen Potential  

One practical application of the theory discussed above is the calculation of the 

scattering of electrons from neutral atoms. In general this is a complicated multi-

channel scattering problem since there can be reactions leading to final states in 

which the atom is excited. However, as the reaction probabilities are small in 

comparison to elastic scattering, for many purposes the problem can be modeled by 

the scattering of an electron from a central potential [11]. This potential represents 

the combined influence of the attraction of the central nuclear charge (Z) and the 

screening of this attraction by the Z atomic electrons. For a neutral target atom, the 

potential vanishes at large distances faster than    . A very accurate 

approximation to this potential can be had by solving for the self-consistent 

Hartree-Fock potential of the neutral atom. However, a much simpler estimate can 

be obtained using an approximation to the Thomas-Fermi model of the atom given 

by Lenz and Jensen [12]. 
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and  
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 This potential is singular at the origin. If the potential is regularized by taking it to 

be a constant within some small radius      (say the radius of the atom’s 1s shell), 

then the calculated cross-section will be unaffected except at momentum transfers 

large enough so that        .  

The incident particle is assumed to have the mass of the electron, and, as is 

appropriate for atomic systems, all lengths are measured in angstrom ( )  

and all energies in electronvolt (eV). The potential is assumed to vanish beyond 

2Å. Furthermore, the     singularity in the potential is cutoff inside the radius of 

the 1s shell of the target atom. 

The Noble Gases 

The noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and 

radon (Rn) were discovered during the 1800s. Helium has two electrons; neon has 

ten; argon has eighteen; krypton has thirty-six; xenon has fifty-four; and radon has 

eighty-six. All of the noble gases exist on Earth as products of radioactive decay of 

other elements [9]. The noble gases exist in the atmosphere only as monatomic 

gases; that is, a noble gas molecule consists of a single atom rather than two atoms 

like N2 and O2.  

 

The chemical inertness of the noble gases is attributed to their electronic 

configurations. The lightest noble gas, helium, has a configuration of 1s
2
, which 

means its only two electrons are in a filled energy level, and helium does not form 

chemical bonds. The remaining noble gases have configurations that end in the 

pattern ns
2
np

6
, where n is the energy level. These configurations are: 



 

Ne - [He] 2s
2
2p

6
 

Ar - [Ne] 3s
2
3p

6
 

Kr - [Ar] 3d
10

4s
2
4p

6
 

Xe - [Kr] 4d
10

5s
2
5p

6
  

Rn - [Xe] 4f
14

5d
10

6s
2
6p

6
. 

 

In 1962, Neil Bartlett, a Canadian chemist at the University of British Columbia, 

made XeF2 by combining xenon gas with fluorine gas in the presence of sunlight 

[9]. He, along with other scientists around the world, subsequently succeeded in 

making other compounds of xenon and krypton—mostly fluorides, oxides, and 

oxyfluorides. To date, however, no compounds have been made with helium, neon, 

or argon [9]. 

 

Research Methodology 

A FORTRAN program developed by [11] was the main program used for all the 

computations. The program is made up of four categories of files: common utility 

programs, physics source code, data files and include files. The physics source 

code is the main source code which contains the routine for the actual 

computations. The data files contain data to be read into the main program at run-

time and have the extension .DAT The first thing done was the successful 

installation of the FORTRAN codes in the computer. This requires familiarity with 

the computer’s operating system, the FORTRAN compiler, linker, editor, and the 

graphics package to be used in plotting. The program runs interactively. It begins 

with a title page describing the physical problem to be investigated and the output 

that will be produced. Next, the menu is displayed, giving the choice of entering 



parameter values, examining parameter values, running the program, or 

terminating the program. When the calculation is finished, all values are zeroed 

(except default parameters), and the main menu is re-displayed, giving us the 

opportunity to redo the calculation with a new set of parameters or to end 

execution. Data generated from the program were saved in files which were later 

imported into the graphics software Origin 5.0 for plotting. 

RESULTS  

 Results were generated for several electron incident energies and the graphics 

software Origin 5.0 used to plot graphs.  
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Fig. 1: Comparisons of the energy dependence of the Total Cross-Sections of He, Ne, Ar, Kr, Xe and Rn 
using the Partial Wave Decomposition method.  
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Fig. 2: Comparisons of the energy dependence of the Total Cross-Sections of He, Ne, Ar, Kr, Xe and Rn 
using the Eikonal approximation method. 
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Fig. 3: Comparisons of the energy dependence of the Total Cross-Sections of He, Ne, Ar, Kr, Xe and Rn 
using the Born approximation method. 
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Fig. 4: Comparisons of the energy dependence of the Total Cross-Sections of He, Ne, Ar, Kr, Xe and Rn 
using the Optical Theorem approximation method. 

 

DISCUSSION 

The total cross-sections computed using the partial wave decomposition method 

have inverse relationships with the electron incident energies. This is in agreement 

with theoretical data of [16] and experimental data of [10].  

Total cross-section data obtained using the partial wave method are in good 

agreement with data from National Institute of Standards and  

Technology (NIST) Standard Reference Database 64 (SRD 64). Data from Eikonal 

approximation method are in good agreement with present work but lower.  

However, data from the Born approximation method disagree widely with present  

work, Eikonal and NIST SRD 64 data at low incident energies. These 

disagreements were anticipated as the Born approximation is valid only at high 

electron incident energies. However, there is good agreement between the Born 

and other approximation methods at high incident energies as expected. 



From  fig. 1 above, using the partial wave method, we observed that the TCS for 

He decrease with increasing electron incident energies from 1 to 1,000 eV. The 

TCS for Ne, Ar, Xe and Rn exhibited a number of minima and maxima between 1 

to 100 eV, but decrease with increasing incident energies between 100 to 1,000 eV. 

Also, the TCS increase with increasing atomic number for the noble gases. The 

differences in TCS for He, in the energy range of about 70 to 1,000 eV, are 

substantially higher than differences in TCS for other noble gases. This might have 

resulted from the fact that He has an “S” valance shell while all the others have “P” 

valence shells. 

From fig. 2, using the Eikonal method, the TCS for He also decrease with 

increasing electron incident energies from 1 to 1,000 eV. The TCS for Ne, Ar, kr, 

Xe and Rn exhibited a number of minima and maxima between 1 to 30 eV, but 

decrease with increasing incident energies between 30 to 1,000 eV. Also, the TCS 

increase with increasing atomic number for the noble gases. The differences in 

TCS for He, in the energy range of about 50 to 1,000 eV, are substantially higher 

than differences in TCS for other noble gases. 

From fig. 3, using the Born method, the calculated TCS are significantly higher 

than the TCS obtained using the three other approximation methods. This is as a 

result of the fact that the Born approximation is only valid at high electron incident 

energies. As previously observed, the calculated TCS decrease with increasing 

incident energies but no minima and maxima were observed for all the noble gases.  

From fig. 4, using the optical theorem method, the calculated TCS for Kr, Xe and 

Rn exhibited a number of minima and maxima in the energy range of 1 to 100 eV. 

No minima or maxima were observed for He, Ne and Ar. Here also, the calculated 

TCS decrease with increasing electron incident energies. 



The calculated TCS using the partial wave, Eikonal and optical theorem 

approximation methods are generally in good agreement with the experimental 

TCS obtained by [16]. However TCS calculated using the Born approximation 

method are much higher than the experimental values for the energy range 

considered. This is because the Born approximation is only valid at high electron 

incident energies. 

 

CONCLUSION 

Computed Total Cross-Sections (TCS) of elastic electron-atom scattering for the 

noble gases He, Ne, Ar, Kr, Xe and Rn are presented. The TCS were calculated 

using the partial wave, Eikonal, Born, and the optical theorem approximation 

methods with the Lenz-Jensen potential, at incident energies of 1to1000 eV.  

Results obtained using the partial wave, Eikonal and optical theorem methods are 

in good agreement with the experimental TCS values reported by [16]. 
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