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ABSTRACT 

Hamiltonian function for the transport of contaminants 

was constructed and simulated for different forms of 

flow velocities and diffusion models. The flow 

velocities vary in space and time while the diffusion 

models are functions of contaminant concentration 

leading to nonlinearity in the transport equation for the 

contaminant distribution. Explicit space centre and 

forward time finite difference approximation was 

applied to solve the equations. Graphical outputs of the 

contaminant distribution in space and time for the space 

varying carrier velocity show that diffusion plays 

significant role in the contaminant distribution in the 

half integer and one quarter  power models, where the 

peclet number is greater than unity contrary to the 

prediction of linear theory. Advection dominates the 

contaminant distribution only when the peclet number, 

Pe is of several orders of magnitude greater than unity 

(Pe =149, 
1
229). In the harmonic diffusion models and 

space varying advection both diffusion and advection 

contribute to contaminant distribution when Pe < 1, 

which according to linear theory should be diffusion, 

dominated. 

(Keywords: Hamiltonian, Advection, Diffusion, 

Contaminant and models) 

 

INTRODUCTION  

A Hamiltonian form H for a dynamical system is very 

important in that a number of inquires, and sometimes 

conclusions can be made about the system without a 
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prior solution of the dynamical equation. For instance, a 

Hamiltonian functional which is not explicit in time t 

may lead to autonomous flow with H as one of the 

integrals of motion. If some coordinates are cyclic in H, 

the conjugate momenta are also constants of motion. 

If H is one dimensional (1-D) and independent of t, 

then chaotic motions are ruled out [1,2]. The dynamical 

equations of motion of the state variables 𝜉k  are 

furnished by the Hamilton‟s equations   

      

   ̇
 
  

  

   
   (1) 

Where 𝜂 is an appropriate sympletic structure and   ̇
 
 

represents derivative of the state variable 𝜉k  with 

respect  to time [2,3]. 

There are however, some Hamiltonian functional forms 

such as ours which though lead to the dynamical 

equation correctly given by (1) may lack any general 

conclusion. The difficulties may be due to several 

reasons. In a purely mathematical abstrictions, all 

variables in H other the time t is state variable. 

However, in application some variables may be state 

variables in the moving particle frame but are 

independent variables of the same status as t in the 

observation frame. For example in the observation 

frame the space variable x may not be a function of 

time. Under this situation equation (1) will lead to a 

spatio-temporal dynamics (STD). 

Transport of matter in fluids is one   where STD has 

found applications over the years. Analytical solution of 

transport equation is possible under extreme 

assumptions such as steady state, laminar flow, constant 

diffusion[4]. 

In practice these assumptions are rarely valid for non-

guided flows which are by far the most dominant in 

nature. The removal of these assumptions implies 
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inherent non-linearity in the transport equations and an 

invitation to computer simulations. 

A lot of advances have been made in recent years in the 

simulation of non-linear spatio-temporal transport 

equations and their applications in environmental 

pollution[5-8]. Nonlinearity may enter the transport 

equations through the carrier flow velocity, the 

diffusive term, and the source and sink models among 

others. 

The Peclet number is another important non-

dimensional term which compares the characteristic 

time for dispersion and diffusion given a length scale 

with the characteristic time for advection [9]. This is 

given by   

     
  

 
    (2) 

where u is the velocity of fluid flow, L is the 

characteristic length scale and D is the diffusion 

coeffiecient [10]. 

In practice the values of the diffusion and advection 

coefficients vary widely from one river to another. The 

precision of the numerical solution of these models 

depend on the transport nature: advection dominant 

(     ) or diffusion dominant (    ) [11,12]. 

 

In this paper we constructed a Hamiltonian for the 

transport equation and simulate the equation for 

different forms of flow velocities and diffusion factors. 

 

THEORETICAL CONSIDERATION 

The Hamiltonian of the transport equation is given by

  

    
 

 
       

  

  
  ∫ (

  

  
)
 

     ∫      

           (3) 

In application, C may represent the contaminant 

concentration in a moving fluid of velocity u, x is the 

spatial coordinate,   is the decay strength while D is the 

diffusion coefficient. The time evolution of C is given 

by the analogous form of the canonical equation (1): 

   ̇          (4) 

where the symplectic matrix     
 

 
  is a 1x1 matrix, 

and     
 

  
 . Equation (4) correctly gives the transport 

equation 
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)      (5) 

If the flow velocity is uniform. This result can easily be 

extended to 2-D. If v is the flow velocity in the y-

direction then     
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)            (6)                       

 

Half Integer Diffusion Model 

We assumed a diffusion model of the form  

        √     (7) 

We let the x-direction be the wind direction so that 

there is no advection in the y-direction but diffusion is 

retained in both directions. Here   is a consistent 

diffusion parameter 

Using equation (7) in (6) the transport equation for 

above model becomes 
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   )            (8) 

 

The One-Quarter Power Model 

The One-Quarter Power model is of the form 

          
 

     (9) 

The transport under similar assumptions as in the half 

integer model becomes 
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where   is yet another consistent diffusion parameter. 

The Harmonic Model 

We also considered a unit amplitude oscillating model 

of the form 

                                       (11) 
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Where   is an inverse concentration parameter. The 

transport equation under this model is 

  

  
  

  

  
        (

  

  
)
 
       (

  

  
)
 
 

     
   

         
   

    –            (12) 

 

Discretization Sheme 

Implicit finite difference schemes are generally known 

for their unconditional stability in solving linear 

differential equations [13]. Implicit schemes are 

however difficult to apply to nonlinear problems 

because the art of discretization may not remove the 

nonlinearity in the computational space and therefore 

linear system of equations cannot be written and solved 

for nonlinear equations. On the other hand the Courant-

Fredrick stability condition 
   

          for explicit 

schemes may not hold when applying to nonlinear 

equations. In the mix of these two problems it is natural 

to follow „trial will convince you strategy. We applied 

explicit space centre and forward time finite difference 

approximation to equation (8), (10) and (12) . Input 

parameters were adjusted to ensure that numerical over-

floating did not occur before the end of simulation run. 

We consider two types of advection velocity for our 

entire model of the transport equation, one varying in 

space and the other varying in time, which are given as 

u= u0e-
 x

 and u= -A sinωt        (13) 

respectfully.  

where u0 and   are constant, A is the amplitude and ω is 

the angular speed set at ω=90rads
-1

 

The spatial exponential decay model in the contaminant 

carrier advection velocity is intended to describe the 

practical situation where the speed of a river dwindles 

as it approaches its bedding planes, while the time 

oscillating model describes situations where advection 

velocity may change due to high or low volume of 

water in the river, occasioned by rainfalls. 

RESULTS AND DISCUSSION  

Fig. 1-6 show results for the exponential decay form of 

the advection velocity for the half integer model. Near 

the middle of the river (Fig. 1), the line of propagation 

distribution of the contaminants decreases almost 

uniformly towards the boundary value. Two reasons 

may account for this. Diffusion may have shifted 

contaminants out of propagation and secondly, 

deposition characterized by the mortality factor   may 

have reduced the contaminant concentration. Close to 

the end of transverse boundary (y=0.9268, Fig.  2), 

there is spatial oscillations in the contaminant 

distribution near the source (0≤ x ≤ 0.3) before it 

decreases uniformly downstream. The decrease is 

however, more rapid than when the transverse 

coordinate was near the centre of the simulation width. 

This result is expected because very far from the 

source, diffusion has not taken enough contaminants 

there, so the little that reaches the location quickly 

decays to the background downstream. About half way 

downstream (x=0.4878), the transverse distribution of 

the contaminant at time t = 0.9 unit (Fig. 3) appears 

much like a normal distribution with the origin 

displaced to about x=0.2 unit of length. This becomes 

flattened after a long time t=1.9608 units at x=0.9756 

unit (Fig. 4). The sharp fall and rise in the concentration 

near the origin and near the end of the transverse 

direction respectively may be discarded. The numerical 

scheme is only trying to conform to the boundary 

conditions at the expense of physical interpretation. 

Near the middle of the simulation plane, (x,y) = 

(0.4878,0.5610), the distribution (Fig. 6) is an 

exponential decay. Close to the boundary, (x,y) = 

(0.9268, 0.9756), the distribution (Fig. 5) is also 

exponential, but at a much slower rate compared to the 

middle location. Near the boundary, the „wall‟ (river 

bank) might have limited the diffusion of contaminants 

so that it is only advection and mortality that degrade 

the concentration in time. This is not the case near the 

middle where diffusion has no restriction. It is thus not 

surprising that the decay is more rapid there than near 

the boundary. The practical implication of this result is 

that where people drink water from flowing streams, 

fetching the water far from the banks may contain less 

contaminant than near the bank. 

 

The peclet number (eqn 2)  is 

    
        

        √  
           (14)   

which is greater than unity and by linear theory, the 

contaminant distribution should be dominated by 

advection making the spread of contaminants in the 

transverse direction to be nearly zero. In practice when 

contaminants are washed into a river, turbulence and 

eddy currents in the fluid flow also help to distribute 
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contaminants in the transverse directions. Non linear 

models of the transport equation thus appear to describe 

situations close to practical observation better than 

linear models. 

Fig. 7-13 show results for the temporal oscillatory 

advection velocity for the half integer model. The 

downstream contaminant concentration reduces steadily 

until half the simulation length when strong oscillations 

begin to occur (Fig. 7-8). Even though the advection 

velocity is oscillatory in time, the left boundary, x=0, 

remains a node. It thus takes several spatial steps for the 

distribution to de-tune from the nodal condition and 

follow the oscillating form of the advection velocity. 

The transverse contaminant distribution sampled at x = 

0.5366 and x= 0.9512 for early time, t=0.9020 and late 

time, t=1.9608 (Fig. 9-10) appear nearly constant in 

space. Here the peclet number 

    
    

       √  
             (15) 

is overwhelmingly greater than unity which mean that 

the effect of non linearity in the diffusion model is 

subsumed, leaving advection to dominate the 

distribution of contaminant in aggrement with the linear 

model of [14] for Pe  ranging from 43 - 415. The time 

variations of concentration at different locations look 

interesting. The concentration decreases almost linearly 

(Fig 11) at (x,y) = (0.3658, 0.4878) while at (x,y)= 

(0.7317,0.7561) (Fig 12) it begins to oscillate with 

increasing amplitude after an initial linear decrease. 

Similarly, near end of the simulation plane (x,y) = 

(0.9268, 0.9756), the concentration oscillates but with 

decreasing amplitude (Fig 13). The first and last 

locations are close to the boundaries so that the 

oscillating advection either decreases linearly the 

contaminant concentration or with decreasing 

oscillating amplitude. Away from the boundary and 

with the neglect of diffusion, the concentration of 

contaminants at such location may increase or decrease 

with fluctuating amplitudes in complete respond to the 

advection fluctuations. 

Fig 14-16 show the results for the exponential decay 

form of the advection velocity for the one quarter 

model. The peclet number for the exponential decay 

advection velocity is 

    
     

       √  
                 (16) 

It is of the same order of magnitude as in the half-

integer model. The contaminant distribution follows the 

same pattern as for the half-integer model with 

diffusion accounting for the near normalized transverse 

concentration distribution (compare Fig 1- 3 with Fig 

14-16 respectively). The peclet number for the 

oscillation advection velocity Fig 17-18 is       

     
       

         √  
               (17) 

This is even much greater than when Pe was 149 in the 

half integer model, with similar oscillating advection 

velocity. One expects that the diffusion concentration is 

further suppressed. These are clearly the situations 

when one compares Fig 18 with Fig 10. In Fig 18 one 

sees that transverse concentration distribution is almost 

parallel to the coordinate axis while it was linearly 

decreases with a gradient of about 1.1 units/m in Fig 10.  

The oscillations in the contaminant concentration in 

downstream direction begins at about x=0.2 units with 

five clear peaks before the boundary (Fig 17) compared 

with that of Fig 8 which start about x=0.55 and had 

three clear peaks before the boundary. 

Fig. 19-24 show results for the harmonic model. 

 The peclet number for the exponential decay form of 

advection velocity, 

    
    

 
               (18) 

While for the oscillating model of advection,  

    
    

 
               (19) 

 In both cases   < 1. According to linear theory, 

diffusion should suppress advection. This is not exactly 

true for our model. However there is faster exponential 

decay of concentration in the downstream coordinate 

(Fig 19) and nearly steady concentration maintained 

across the transverse direction (Fig 20). This 

corresponds to strong diffusion. At a much longer time t 

=1.9661 units (Fig  21), the lateral concentration 

distribution has reduced drastically but still maintains a 

steady value. This model predicts rapid reduction of 

contaminant concentration in both directions. The 

peclet number     even though less than unity, the 

diffusion was not so dominant as to make the transverse 

distribution fluctuates in space. Alternatively, the 

nonlinearity in the diffusion model is not an explicit 

function of the space coordinates but that of 

concentration. This may explain why the transverse 

distribution is not harmonic in space. However for the 

same harmonic diffusion model and oscillatory 

advection (      ), the concentration oscillates in the 

downstream direction (Fig 22) while strong diffusion 
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maintains the concentration at a high steady value in the 

lateral direction initially (Fig 23) t=0.4878 units and at 

a much lower steady value after a longer time, t=1.9608 

units (Figs 24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 

The Hamiltonian H given in equation (3) together with 

the sympletic matrix J yields the contaminant transport 

equation (5). Due to non linearity in the transport 

equation , the simulation results for the half and one-

quarter diffusion models show that diffusion plays 

significant role in the contaminant distribution even  

though the peclet number Pe is greater than unity, which 

by linear theory should be advection dominated.  

Similarly, in the harmonic diffusion models it was 

found that for Pe < 1, contaminant transport by 

advection is not negligible contrary to linear theory 

results. The simulation results also show that 

contaminant concentration is higher at the bank of the 

streams (rivers) than far from the bank, probably due to 

limitation in the diffusion directions. 
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Fig 1: Distribution of contaminants concentration c(x,y) 

along the downstream direction x, 

(y,t)=(0.4878,0.9804) parameters u0=0.32,  =0.2,  =9.0 

x10
-3

, b=0.01 

 

Fig 2: Distribution of contaminants concentration 

c(x,y) along the downstream direction x    

(y,t)=(0.9268,1.961),  Parameters u0=0.32,  =0.2, 

 =9.0 x10
-3

, b=0.01 

 
Fig 3: Distribution of contaminants concentration 

c(x,y) along the transverse direction y  

(x,t)=(0.4878,0.9804), Parameters u0=0.32,  =0.2, 

 =9.0 x10
-3

, b=0.01 

 

Fig 4: Distribution of contaminants concentration 

c(x,y) along the transverse direction y   

(x,t)=(0.9756,1.9608),  parameters u0=0.32,  =0.2, 

 =9.0 x10
-3

, b=0.01 

 

Fig 5: Time variation of contaminants distribution 

at two fix locations  (x,y)=(0.4878,0.5610),  

parameters u0=0.32,  =0.2,  =9.0 x10
-3

, b=0.01 

 

Fig 6:Time variations of contaminants distribution 

at two fix locations   (x,y)=(0.9268,0.9756),  

parameters u0=0.32,  =0.2,  =9.0 x10
-3

, b=0.01 
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Fig 7: Distribution of contaminants concentration 

c(x,y) along the downstream direction x 

(y,t)=(0.4878,0.9412), parameters a=0.52, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 

 

Fig 8: Distribution of contaminants concentration 

c(x,y) along the downstream direction x   

(y,t)=(0.9268,1.9608),  parameters a=0.52, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 

 

 
Fig 9: Distribution of contaminants concentration 

c(x,y) along the transverse direction y  

(x,t)=(0.5366,0.9020),  parameters a=0.52, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 

 
 

Fig 10: Distribution of contaminants 

concentration c(x,y) along the transverse 

direction y  (x,t)=(0.9512,1.9608),  parameters 

a=0.52, ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 

 

Fig 11: Time variations of contaminants 

distribution at two fix locations   

(x,y)=(0.3658,0.4878),  parameters a=0.52, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 

Fig 12: Time variations of contaminants distribution at 

two fix locations     (x,y)=(0.7317,0.7561),  parameters 

a=0.52, ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 
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Fig 13: Time variations of contaminants 

distribution at two fix locations   

(x,y)=(0.9268,0.9756),  parameters a=0.52, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.009 

 

 
Fig 14: Distribution of contaminants concentration 

c(x,y) along the downstream direction x    

(y,t)=(0.4878,0.9804),  parameters u0=0.26,  =0.2, 

 =9.0 x10
-2

, b=0.01 

 

 
Fig 15: Distribution of contaminants concentration 

c(x,y) along the downstream direction x   

(y,t)=(0.5122,1.5686), parameters u0=0.26,  =0.2, 

 =9.0 x10
-2

, b=0.01 

 
Fig 16: Distribution of contaminants concentration 

c(x,y) along the transverse direction y   

(x,t)=(0.5620,0.9804), parameters u0=0.26,  =0.2, 

 =9.0 x10
-2

, b=0.01 

 
Fig 17: Distribution of contaminants concentration 

c(x,y) along the downstream direction x   

(y,t)=(0.9756,2.000),    parameters a=0.53, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.006 

 

 
Fig 18:  Distribution of contaminants concentration 

c(x,y) along the transverse y  (x,t)=(0.9756, 

1.9608),  parameters a=0.53, ω=90rads
-1
,  =9.0 x 

10
-4

, b=0.006 
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Fig 19: Distribution of contaminants concentration 

c(x,y) along the downstream direction x   

(y,t)=(0.9268,1.7647), parameters u0=0.1,  =0.9, 

 =1.0 x10
-3

, b=0.01 

 

 
Fig 20: Distribution of contaminants concentration 

c(x,y) along the transverse direction y    

(x,t)=(0.3658, 0.3922), parameters u0=0.1,  =0.9, 

 =1.0 x10
-3

, b=0.01 

 

 

 
Fig 21: Distribution of contaminants concentration 

c(x,y) along the transverse direction y  

(x,t)=(0.9512, 1.9661), parameters u0=0.1,  =0.9, 

 =1.0 x10
-3

, b=0.01 

 
Fig 22: Distribution of contaminants concentration 

c(x,y) along the downstream direction x   

(y,t)=(0.9756,1.9608), parameters a=0.4, ω=90rads
-

1
,  =9.0 x 10

-4
, b=0.006 

 

 
Fig 23: Distribution of contaminants concentration 

c(x,y) along the transverse direction y   

(x,t)=(0.4878, 0.9804),         parameters a=0.4, 

ω=90rads
-1
,  =9.0 x 10

-4
, b=0.006 

 
Fig 24: Distribution of contaminants concentration 

c(x,y) along the transverse direction y   

(x,t)=(0.9756, 1.9608),  parameters a=0.4, 

ω=90rads
-1

,  =9.0 x 10
-4

, b=0.006 
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