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Abstract 

An analysis has been carried out to study the Magnetohydrodynamics flow of  

incompressible non-Newtonian dusty viscoelastic fluid between two parallel horizontal non  

conducting porous plates with heat transfer. The partial differential equations governing the  

flow and heat transfer are converted into highly non-linear coupled ordinary differential  

equations which are solved numerically by employing Adams-Bashford-Moulton classical  

method (a "predictor-corrector" method) in a computer algebra package known as Maple. 

The effect of magnetic and porosity parameters are examined for both velocity and temperature 

distribution of the fluid and particles. The analysis reveals that the fluid and particles temperature 

profile decreases significantly due to increase in magnetic and porosity parameter while the velocity 

profile increases. 

 

Keywords: Viscoelastic fluid, classical method, particle concentration, magnetic and porosity 

effect, Magnetohydrodynamics (MHD) flow. 

 

Introduction 

The studies on the flow of a viscous incompressible fluid between two horizontal 

parallel plates and their different transport phenomena has application in devices such as 

MHD pumps, MHD power generators, accelerators, petroleum industry, purifications of 

molten metals from non-metallic inclusions and fluid droplets - sprays 

The fluids under consideration are electrically conductive and have both viscous and 

elastic properties. Examples are molten plastics, pulps, emulsion e.t.c. and some variety of 

industrial products that have viscoelastic behaviour in their motion. Such fluids contain 

some spherical non-conducting dust particles in form of impurities. The application of these 

dust particles on viscoelastic fluid flow can be found in the extrusion of plastics in the 

manufacturing of nylon and rayon, textile industry, purification of crude oil, paper and pulp 

industry. 
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In the last decades, several authors have carried out the study of viscoelastic fluid 

under different physical conditions.  Sujit and Emmanuel [1] have studied the flow and heat 

transfer of viscoelastic fluid on a stretching sheet.  

Shyamanta [2] investigated the unsteady flow of density viscous electrically 

conducting fluid through a channel and discussed the magnetic effect on velocity profiles. 

Attia [3] also studied the effect of porosity on unsteady poiseulle flow of a 

viscoelastic fluid with temperature dependent viscosity.  

In the present work, we shall study the movement of a dusty viscoelastic electrically 

conductive fluid past horizontal parallel plates with heat transfer. Effect of porosity and 

magnetic field are also investigated. We assume that the plates are maintained at a 

temperature which decays exponentially with time. The expressions for fluid and dust 

particle velocity and temperature distribution of the fluid are also obtained. 

 

Formulation of the Problem 

The dusty viscoelastic fluid which is electrically conductive is assumed to be flowing 

between two infinite horizontal plates located at the 0y and hy  . The plates are 

mounted at two different temperatures which decay exponentially with time. The central 

line of the channel is the axisx   and the perpendicular to it is the .axisy   0  which is 

uniform magnetic field is applied normal to the plate. 

The velocity and magnetic field distributions are   0,0,,tyuV  and  0,,0 0 . 

The force experienced by the dust particle is inertial force and is equal and opposite to that 

experienced by the dust particles due to the fluid in motion. 

 

Assumptions 

The presence of the dust particle in viscoelastic fluid (under consideration) makes the 

study of the dynamics fluid complicated. 

We will investigate this problem under various simplified assumptions. To write down the 

governing equation of this dusty viscoelastic fluid flow in a reasonable simple form, certain 

assumptions were made as follows; 

* The fluid is incompressible 

* Dust particles are solids, elastic sphere, identical and symmetrical in size, electrically 

non-conducting and are distributed uniformly within the fluid motion. 

* Chemical reactions and mass transfer and other interaction are neglected 
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* The plates are infinitely long, so that the velocity  u  of the fluid and dust particle 

velocity  pu  are function of tandy  only. 

* The density of dusty particle is constant and has small value throughout the fluid 

motion  

* Hall effect, the effect due to buoyancy, polarization effect are negligible. 

* Reynold number is small compared to unity so that the induced field is negligible. 

* There is no flow initially  0ttimeat  and plates are at different temperatures 

 hyatTTtwhenandyatTTtwhenei  10 ,00,,0.    

* The heat generation due to elastic deformation was considered because we assume 

the fluid possess elastic properties than viscous property. 

The governing equations under above assumptions are [1]: 
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The heat transfer occurs from 0y  to hy   by conduction through the fluid. The dust 

particles lost heat energy to the fluid by concentration through their spherical surface. The 

energy equations needed to describe the temperature distribution for both the fluid and the 

dusty particles are respectively given as [3]: 
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Initial and boundary Conditions 

The fundamental equations stated in the previous section are to be solved under 

appropriate initial conditions to determine the flow field of the fluid and the dust particles. 

1. There will be no mass transfer at a solid boundary 

2. The plates are maintained at two different temperatures which decay exponentially 

with time. 

3.  the dust particle may slip at the boundary and the initial and boundary conditions are 

to be taken at 0y  

Therefore boundary conditions of the problem are: 
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where 10 TandT  are the temperature at the plate hyandy  0  respectively 

The component of the shear stress of the viscoelastic fluid is given as [2]: 
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k


   is called the relaxation time, k  is the modulus of rigidity and   represent the shear 

strain.  

Equation (6) can be solved for   in terms of velocity component u  to obtain 
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Substitute equation (7) into (1) to obtain 
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For non dimensional quantities we have, 
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Substituting (9) in equations (2), (3), (4) and (8) and then removing the caps, we obtain 
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The non-dimensional initial and boundary conditions are 
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where  01 TT , is a constant temperature 

In order to solve equation (10)-(13) we consider 
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The corresponding initial and boundary conditions are now 

 
)20(0)0(,1)0(0)0()0(,0)0()0(  gfgf
   

  )1(,)1(,1)1( 8Agf                  (21) 

Equation (16) and (18) represent a coupled differential equation which are solved 

numerically under the initial and boundary condition (20), using Adams-Bashford-Moulton 

classical method (a "predictor-corrector" method) in a computer algebra package known as Maple. 

 

Results and Discussion 

The objective of our study is to investigate the magnetic and porosity effect of MHD viscoelastic 

dusty fluid flow between two horizontal plates at a different constant values of magnetic field 

parameters ( aH ) and porosity parameter ( M ). Computations have been made for 0.1 , 

0.1eR , 2.0Q , 2.0n , 1S , 0.1R , 1.00 L , 76.0rP , 0.1cE . The velocity and 

temperature distribution for both the fluid and particles are observed from the figures. 

The application of uniform magnetic field adds one resistive term to the momentum equation and 

Joule dissipation term to the energy equation.  

Figure 1-3 illustrates the influence of the magnetic parameter aH  on horizontal velocity and 

temperature distribution of the fluid and particles. It is noticed that increase in magnetic parameter 

 0.1,5.0,0aH  increases sharply the velocity distribution of both the fluid and particles while the 

temperature distribution of the fluid decreases. This is due to the fact the rate of transport is 

considerably increase with increase of aH  since the fluid is electrically conductive and flow in the 

direction of magnetic field line. 

Figure 4-6 reveal the effect of porosity parameter M  on velocity and temperature distribution of 

the fluid and particles. Increase in porosity parameter  0.2,5.1,0.1M  increases the velocity 
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Figure 1: Velocity profile of fluid for different values of aH  
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different values of aH  Figure 3: Temperature profile of fluid for 
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Figure 4: Velocity profile of fluid for different values of M  
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Figure 5: Velocity profile of particle for different values of M  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Temperature profile of fluid for different values of M  
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Conclusions 

In the present work, the flow of electrically conducting viscoelastic dusty fluid has been 

investigated. Numerical computations are carried out using Adams-Bashford-Moulton classical 

method.                         

Effects of the magnetic and porosity parameter on the flow and heat transfer characteristic have 

been examined. From this investigation, we can draw the following conclusions: 

* The effect of transverse magnetic field is to increase the velocity field which in turn causes 

the enhancement of the temperature distribution across the plates. 

* The velocity distribution of the fluid and parameter increase as results of increase in porosity 

parameter which made the temperature profile lower throughout the flow region. 

 Therefore, we can conclude that to predict more accurate results, the effects of magnetic 

field and porosity parameter have to be considered in the analysis of magnetohydrodynamics flow 

of viscoelastic dusty fluid and heat transfer.  
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