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ABSTRACT 

 

This paper examines optional stopping theorem and its areas of applicability. It also 

examines two approaches in the determination of ruin probability and expected duration of 

a coin flipping game. First, an indirect approach based on the use of optional stopping 

theorem and second, a direct approach based on the use of Wald’s first two identities. 

Having compared the two results, it was observed that both indirect and direct approach 

yield the same result for both ruin probability and expected duration of the game. 
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1.0 INTRODUCTION 

Optional Stopping Theorem (OST) is a theorem which falls under the study of a 

discrete time martingales. However, a discrete time martingales falls under the study of a 

discrete time stochastic processes (i.e., a sequence of random variables { , 0nX n  }. For 

OST to be applied to any given problem being defined by a given function, the function 

being defined must first acquire a martingale property. It will be wise enough for the 

readers to be provided with a little knowledge of martingales. 

Martingale is an English word for martegal (French dialect word meaning 

inhabitant of Martigues, a village in France). The oldest meaning of martingale seems to be 

a piece of tack used on horses to control head carriage. Originally, a martingale referred to 

a class of betting strategy popular in the 18
th

 century France. The simplest of these 

strategies was designed for a coin flipping game. That is, a game in which the gambler 

wins his stake if the coin comes up „heads‟ and loses if the coin comes up „tails‟. This 

strategy had the gambler (those who play games for bets) to double his bet after every loss. 

Since the gambler with infinite wealth is guaranteed to eventually flip head, the 

martingale betting strategy was seen as a sure thing for those who practiced it. 
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Unfortunately, none of those practitioners‟ possessed infinite wealth and the exponential 

growth of bets would quickly bankrupt those foolish enough to use martingale after even a 

moderately long run of bad luck [1]. 

Another intuition about gambling as stated by Karlin and Taylor [2] is that a 

gambler cannot turn a fair game into an advantageous one by periodically deciding to 

double the bet or by cleverly choosing the time to quit playing. This intuition invariably led 

to OST. 

 There are various applications of martingales. For example Ugbebor and Ganiyu 

[3] applied the martingale model to the NGN/USD exchange rate. OST has many 

applications. For example, it was applied in risk theory by Gerber and Shiu [4-7]. The OST 

can also be applied to prove the impossibility of successful betting strategy of a gambler 

with a finite lifetime and a house limit on bet. 

This paper examines a direct approach to the determination of ruin probability and 

expected duration of a game using Wald‟s first two identities. Also, the same type of 

problem was examined with an indirect approach based on the use of conditional 

expectation, Martingale properties, as well as OST. The two results are then compared. It 

was found that they are the same. It was noted that OST was telling us that even with a well 

chosen strategy for stopping a game, under some reasonable hypotheses a martingale is still 

a fair game.  

 

2.0 PRELIMINARIES 

2.1 Conditional Property of expectation 

Definition 2.1 Consider discrete random variable X andY . Let   0XS x P X x   . The 

conditional expectation ofY given that X x  has occurred, where Xx S is defined by 

   
y

E Y X x E Y X x yP Y y X x                  (2.1) 

Theorem 2.1 

Let Y be independent of X  and  E Y X Y    . Then, the function  X satisfies 

   E X E Y    . (See reference no [8] for the proof). 
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Definition 2.2 Consider random variables 1,..., nX X . Denote by
nF the   algebra (i.e. 

collection of events) generated by these random variables which satisfies the properties (i) 

nF  (ii) nAF c

nA F and (iii) 
1

1

,..., k n k n

k

A A A




  F F , then 

 1,...,n nX XF , 0n  . 

Definition 2.3 Let 1,... nX X be random variables. Also, let , 0n n F be the  algebra 

generated by the random variables. The random variableY is 
nF -measurable if it depends 

on 1,..., nX X , i.e.  a function such that 

 1,..., nY f X X  

Theorem 2.2 (Linearity property of conditional expectation 

Let ,Y U andV be discrete random variables. If the scalars ,a b , then 

     [ ]E aU bV Y aE U Y bE V Y         (2.2) 

(See [8] for the proof). 

Definition 2.4 A stochastic process , 0nX n  is said to be a martingale with respect to a 

process  , 0nY n  , if for all 0n  , 

 nE X  and 1 0,...,n n nE X Y Y X          (2.3) 

Remark 2.1 It should be noted that, by conditional expectation property which states that 

 [ ]E g X Y y  is a function of y  for each g . For if we have   ,E g X   nX  is a 

function of 1,..., nY Y  determines the value of nX . Also by the law of total probability for 

expectations, 

     1 1 0 1, ,...,n n n nE X E E X Y Y Y E X       

And thus by induction, 

   0nE X E X   n         (2.4) 

It is useful to think of 0 ,..., nY Y as information or history up to stage n . 

Remark 2.1 If a game is a martingale, sub-martingale and super-martingale it is said to be 

fair, favourable and and unfavourable respectively. 
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Example 2.1 Martingale, Sub-martingale and Super-martingale 

Consider a gambler who wins N100when a coin comes up heads and loses N100  when the 

coin turns up tails. Let 1nY   be the event that heads comes up and 1nY   be the event that 

tails comes up. Suppose now that the coin may be biased such that  1nP Y p  , that is 

probability that the heads come up is p , and  1 1nP Y q p      i.e. the probability that 

the tails comes up is q . 

(a) If
1

2
p  , then  

1
1

2
nP Y   and  

1
1

2
nP Y    , the gambler‟s fortune over time is a 

martingale. 

(b) If
1

2
p  , e.g.

1

4
p  , then  

1
1

4
nP Y   and  

3
1

4
nP Y    . This implies that q p , 

then the gambler loses money on the average and the fortune over time is a sub-

martingale. 

(c) If
1

2
p  , e.g.

3

4
p  , then If  

3
1

4
nP Y    and  

1
1

4
nP Y    . This implies that p q , 

then that gambler wins money on the average and the fortune overtime is a super-

martingale. 

Theorem 2.3 If a gambler has equal chance of winning or losing a game and his betting 

strategy depends on the past history of the game, then the game is “fair” in the sense that 

the expected value of the next observation given the past history, is equal to the last 

observation. For the proof of this result (see [8]).   

Proposition 2.1. Let nX be a martingale with respect to (w.r.t.) { nF } or w.r.t.  nY . Then 

(i) n k n nE X X   F , for every k . 

(ii)    0nE X E X ,  n  

For the proof of the result see (see [8]). 

Lemma 2.1 

Let , 1nY n  be a sequence of independent and identically distributed random variables 

with mean zero and finite variance 2 . Let 1 ..n nX Y Y   . Also, let 2 2:n nM X n  . 

Then, 

 , 0nM n  is a martingale w.r.t.  , 0nX n   
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Proof: 

First note that  2 2

1 1 1n nM X n      

   
2 2

1 1 1n n nM X Y n        

= 2 2 2 2

1 12n n n nX X Y Y n       

Taking the expected value and conditioned it on 0 ,..., ,nY Y  

1 0 ,...,n nE M Y Y    = 2 2 2 2

1 1 0( 2 ) ,...,n n n n nE X X Y Y n Y Y  
       

2 2 2 2

0 1 0 1 0,..., 2 ( ,..., ,...,n n n n n n nE X Y Y E X Y Y Y E Y Y Y n  
              ( by Theorem 2.2) 

0 0 0 1 0,..., ,..., 2 ,..., ,...,n n n n n n n nE X Y Y E X Y Y E X Y Y E Y Y Y
                    

 

    
2

2 2 2

1 0 ,...,n nE Y Y Y n  
      , since nY are independent. 

   
22 2 2 2

1 12n n n nX X E Y E Y n            

2 2 20 0nX n    , [since    10 0n nE Y E Y    ] 

2 2

nX n  = nM  

 , 0nM n  is a martingale w.r.t.  , 0nX n  . 

Remark 2.2 In general, it should be noted that if we have assumed a unit variance in our 

study, i.e. if we let 2 1  , we can define
2:n nM X n  . The same result follows 

using 2 1  . 

Definition 2.5 Let , 0nX n  be a discrete time stochastic process, and nF be the -algebra 

generated by 0 ,..., nX X . A mapping  : 0,1,...,t   is called a stopping time w.r.t. 

 nX (or w.r.t. nF ) if the event t n is completely determined by 0 ,...., nX X (or is a set 

in nF ). 

Remark 2.3 By “determined”, we mean that the indicator function of the event t n can 

be written as a function of 0 ,..., nX X , so that we can decide on whether or not t n from 

knowledge of the process nX only up to time n . We signify this by writing 

   
1

0
0

,...
{ {

if

if

t n
I I X Xnt n t n t n


 

  
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We often omit mentioning of
nX and say that t is a stopping time. 

3.0 OPTIONAL STOPPING THEOREM [OST] 

The OST as stated and proved by Kannan [1] can be stated as follows. 

Let  , 0nX n  be a martingale and t a stopping time. If 

(i) ( ) 1P t    

(ii) tE X    

(ii) 
 

lim 0n t nx
E X I


  
 

 

Then,  

   0tE X E X . 

For the proof, (see [8]). 

3.1 Applications of Optional Stopping Theorem 

Our focus in this paper is to compare the results which could be obtained by the 

application of optional stopping theorem (direct approach) and Wald‟s first two identities 

in the determination of ruin probability and expected duration of a coin flipping game. 

However, we are interested in providing two other applications as follows. 

 „Optional Stopping Theorem‟ asserts that a gambler can not improve his expected 

gain (fortune) having being given a (finite life time) stopping time (which gives conditions 

(i) and (ii) of the above theorem and a house limit on bets
  lim 0n t nx

E X I


  
 

(which 

gives condition (iii) of the theorem) i.e. the expected fortune of the gambler with an infinite 

wealth is zero. Therefore, OST can be used to prove the impossibility of successful betting 

strategy. 

 Consider a random walk that starts at 0  and stops if it reaches m  or m , and use 

the 2

n nY X n  martingale from the result shown in Lemma 2.1 for the case when 1  .  

If t  is the time at which it first reaches m , then      2

1 tE Y E Y m E t   . Since the walk 

starts from 0 , then  0 00 0Y E Y   . Hence,      2

0 0tE Y E Y m E t    . This 

gives   2E t m . 
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4.0 DIRECT AND INDIRECT APPROACH TO THE DETERMINATION OF RUIN 

PROBABILITY AND EXPECT DURATION OF A GAME. 

4.1 A Direct Approach Based on the use of Wald’s First Two Identities to determine 

ruin probability and expected duration of a game. 

Proposition 4.1 (Wald’s First Identity). 

Let the jump variate , 1tY t  have (common) mean  ,   ,kE Y k  , 

and  0 1tP Y r   . Then 

   tE X a E t  , 

where 0 0a X Y  . 

(see [1] for the proof]) 

Proposition 4.2 (Wald’s Second Identity) 

Let 2 be a unit variance of the jump variate , 1tY t  . Then 

Variance    2

tX E t . 

(see [1] for the proof]) 

4.1.1 Statement of the problem 

In the problem below, we are interested in using Wald‟s first two identities to determine 

gambler‟s ruin probability and expected duration of a coin flipping game. 

Two gamblers Dick and Harry play the following game. Dick repeatedly tosses a fair coin. After 

each toss that comes up Heads, Harry pays Dick N100 . After each toss that comes up Tails, 

Dick pays Harry N100 . The game continues until either one or the other gambler runs out 

of money.  Let N a and N  b be the initial fortune of Dick and Harry respectively 

and{ , 0}nX n  be a random walks corresponding to Dick‟s cumulative fortune. 

Let  0 1nP Y r   . If p q , where ,p q are probability of success and failure 

respectively. Then 

(i)  tP X a b P   {Harry is ruined}
a

a b



and dick has all the cash. 

(ii) The expected duration of the game,  E t ab . C.f. Kannan (1997). 
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Proof: 

Let p and q be probability of success and failure respectively. Let 1kY  and 1kY   be the 

event that Dick has all the cash and Harry is ruined, where 0k  . Then 

 1kP Y p   and  1kP Y q   . 

    1. 1kE Y p q p q      

Since p q , then,   0kE Y p q     0kE Y       (4.1) 

Consequently, from Wald‟s first identity,    tE X a E t   

We therefore have  

 tE X a , (by 4.1 where 0  )       (4.2) 

It should be noted that 

 tP X a b P   (Harry is ruined) and  0tP X P  (Dick is ruined)  (4.3) 

       . 0. 0t t tE X a b P X a b P X             

     t tE X a b P X a b            (4.4) 

Substitute  ta E X of equation (4.1) into equation (4.4), we have 

     t ta E X a b P X a b       t

a
P X a b

a b
   


. 

 P (Harry is ruined) 
a

a b



 

Remark 4.2 It should be noted that P (Dick is ruined) 
a

a b



 can also be determined in a 

similar manner. In this case, Harry has all the cash. 

(ii) Now if p q  

     
22

t t tVar X E X E X      

  2 2

tE X a  , by (4.2) 

     
2 2 2( ) 0 0t t tVar X a b P X a b P X a         , by equation (4.3) 

    
2 2

ta b P X a b a            (4.5) 

Substitute  t

a
P X a b

a b
  


 in equation (4.5) above, we have 
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   
2 2

t

a
Var X a b a

a b
   


ab  

Hence from Wald‟s second identity 

   tE t Var X ab  . 

Therefore, the expected duration of the game is  E t ab . 

4.2 An Indirect Approach Based on the use of Optional Stopping Theorem to 

determine ruin probability and expected duration of a game. 

4.2.1 Statement of the problem 

Consider a gambler playing a coin flipping game. Let
1,..., nY Y be a sequence of independent 

and identically distributed Bernoulli random variable with 

   
1

1 1
2

k KP Y P y      for all k . 

Let 0X be a given initial State (capital) and let 0

1

n

k

k

X Y


  be the accumulated fortune of the 

gambler at time n . Then nX is a martingale with respect to nY . Let 

 : min : n nt n X a or X b              

Assume that the gambler is ruined if nX a   and victorious if nX b . Furthermore, if nX  

reaches a before reaching b , then  

(i) the ruin probability of the gambler is 
 

0b X
r

a b





 and 

(ii) the expected duration of the game is     0 0E t X a b X   . 

Proof: 

First, we show that if 

0

1

n

n k

k

X X Y


           (4.6) 

 nX is a martingale. 

Second, we should note that the gambler has equal probability of winning and losing the 

stake. 

    nE Y n p q   
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where p is the probability of winning=
1

2
and q the probability of losing=

1

2
. Hence 

 
1 1

0
2 2

nE Y n
 

   
 

         (4.7) 

It should be noted that 

1

1 0

1

n

n k

k

X X Y






  =
0 1

1

n

k n

k

X Y Y 



  = 1n nX Y  , [by equation (4.8)] 

  1 1n n n n nE X Y E X Y Y 
         

  =    1n n n nE X Y E Y Y , [by Theorem 2.2] 

  =  1n n nX E Y Y , (since nX is a function of nY ) 

  =  1n nX E Y  , (since all nY are independent) 

  = nX , since  1 0nE Y   , [by equation (4.7)]. 

 nX is a martingale. 

    0nE X E X , (by proposition 2.1). 

Since 0X is the initial stake, this is a constant,  

   0nE X X          (4.8) 

Let r be the ruin probability that nX reaches a before reaching b . Hence 

 nP X a r    and 

  1nP X b r   . 

It should be noted that t is a stopping time, therefore, the event  t n is completely 

determined by the sequence , 0nX n  . 


 

  1

t

t

P X a r

and P X b r

   


   
        (4.9) 

From above, 

     t t tE X aP X a bP X b      . 

   (1 )tE X ar b r    .        (4.10) 

By the OST, (4.8) becomes 
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   0 0tE X E X X  . 

Using equation (4.10), we have 

    01tE X ar b r X      

   0a b r X b     


 

0b X
r

a b





          (4.11) 

This is the ruin probability of the gambler. This proves the first part of the result. 

(ii) Let 

2:n nM X n             (4.12) 

nM is a martingale (by Lemma 2.1) 

        2

0 0 00nE M E M E X E X    , (by equation (4.12) 

    0nE M E M , [by equation (2.4)] 

Since 0X is the initial capital and is constant 

     2 2

0 0 0nE M E M E X X          (4.13) 

Also, using (4.12) in this manner, we have 

   2

t tE M E X t   

      2

t tE M E X E t  , (by linearity property of expectation)   (4.14) 

Combining equations (4.13) and (4.14), we have 

       2 2

0 0t tE M E M E X E t X          (4.15) 

From (4.9), we have 

     2 2 2

t t tE X a P X a b P X b        2 2 2 1tE X a r b r     

Substituting this in (4.15), we have 

   2 2 2

01a b r E t X       2 2 2 2

0E t ra b rb X     
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   2 2 2 2

0E t ra b rb X    =  2 2 2 2

0r a b b X   =    2 2 2 2

0b X r b a    

Using 
 

 
0b X

r
a b





 of (4.11) in the above equation, we have 

   
  

 

2 2

02 2

0

b X b a
E t b X

a b

 
  


      (4.16) 

  
       

 
0 0 0b X b X a b b X b a a b

E t
a b

      



 

  
   

 
0 0b X a b b X b a

E t
a b

    



    0 0E t X a b X     

Equation (4.16) gives the expected duration of the game. This proves the second part of the 

result. 

Remark 4.2.1  

 It should be noted that the relation (4.12) ought to be 2 2

n nM X n  . Here, we 

have assumed a relation with a unit variance (i.e. 2 =1 

 Also, the ruin probability that Xn reaches b before reaching a is analogous to the 

above example. The ruin probability of the gambler in this case will be 
 

0( )a X

a b




 

and the expected duration of the game will be   0 0a X X b  . 

 It can be observed that the random walk starts from 0X in the above example. If 

however the walk starts from 0  instead of 0X , then the ruin probability 

that nX reaches a before reaching b is
b

a b
and the expected duration of the game 

becomes ab .  
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 In the above procedure for the proof, we considered the accumulated fortune of the 

gambler which satisfies martingale property. This gives rise to the result of 

proposition 2.1. The optional stopping theorem was then applied to determine the 

ruin probability and the expected duration of the game. Hence we conclude that 

optional stopping theorem is an indispensable tool in this determination. It should 

also be noted that the ruin probability that nX reaches b before a  can also be 

determined in the same manner. This becomes 
 

a

a b
and the expected duration of 

the game is also ab . 

5.0 Conclusion 

The result obtained from this study shows that the determination of ruin probability 

and the expected duration of a coin flipping game using both Wald‟s first two identities (a 

direct approach) and Optional Stopping Theorem gives rise to the same result. However it 

should be noted that the Optional Stopping Theorem tells us that even with a well –chosen 

strategy for stopping a game, under some reasonable hypotheses, a martingale is still a fair 

game. 

References 

[1] Kannan, D. (1997). “An introduction to Stochastic Process”. North Holland Series in   

              Porbability and Applied Mathematics. P. 196, (222-223), 24-25, 28-29. 

[2] Karlin S. and H. Taylor (1975). A first course in Stochastic Processes. Second Edition. 

Academic Press, Section 6.3, P. (253-262). 

[3] Ugbebor O.O. and Ganiyu A.A. (2007). Martingales Associated with Random Walk  

   Model for Foreign Exchange Rate Determination. Nigerian Mathematical Society   

   Journal, Vol. 26 Pp (19-31). 

[4] Gerber H.U., and Shiu, E.S.W. (1994a). “Option Pricing by Esscher Transforms,” .  

              Transactions, Society of Actuaries XLVI:99-140; Discussion 141-191. 

[5] Gerber H.U., and Shiu, E.S.W. (1994b). “Martingales Approach to Pricing Perpectual   

             American Option,”. ASTIN Bulletin 24:195-220. 

[6] Gerber H.U., and Shiu, E.S.W. (1996a). “Martingales Approach to Perpectual American   

             Options on Two Stocks, “. Mathematical Finance 6:303-322. 



 14 

[7] Gerber H.U., and Shiu, E.S.W. (1996b). “Actuarial Bridges to Dynamic Hedging and 

Option Pricing,” Insurance: Mathematics and Economics 18:183-218. 

[8] Ganiyu A. A. (2006). Theoretical Framework of Martingales Associated with Random  

        Walk for Foreign Exchange Rate Determination. An unpublished M.Phil.   

              dissertation, University of Ibadan, Ibadan. Pp 7,11,14,20-21,71-74. 

 

 

   

 

 

 

  

 

 

 

 

 


