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ABSTRACT 

Model Predictive Control (MPC) is a control technique that is widely used in the industries. In the 

problem formulation of MPC, the constrained optimization problem subject to inequality constraints is 

a standard optimization problem, know as quadratic programming (QP). In this paper, we present a 

method to exploit semidefinite relaxation in MPC problems. In particular, we use the solution of 

semidefinite relaxation to solve MPC problems instead of QP. We also use the solution value of the 

semidefinite relaxation as a bound for the objective function. We implemented our method using 

Matlab and provide some numerical results for a system using the MPC algorithm we have developed. 
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1.0 Introduction 

Model Predictive Control (MPC) is a form of control in which the current control action is 

obtained by solving on-line, at each sampling instant, a finite horizon open-loop optimal control 

problem, using the current state of the plant as the initial state. The optimization yields an optimal 

control sequence and the first control in the sequence is applied to the plant. This is its main difference 

from conventional control which uses a pre-computed control law [1].  

QP methods are widely used in applications of MPC and occur frequently in control theory, 

optimal filtering, operations research etc. Most MPC applications require a linear model to represent 

the process of interest over a moving time horizon with a quadratic objective or cost function to drive 

the controlled variables back to their set-points. In [2], QP was used for large-scale MPC. This paper 

focuses on optimization problems in MPC, which can be formulated as linear-quadratic problems. 

Such linear-quadratic optimization problems have been a recurring theme in semidefinite optimization 

for a very long time. A linear quadratic optimization problem is formulated in a semidefinite 
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relaxation manner. Semidefinite programming (SDP) is one of the fastest developing branches of 

mathematical programming. The reason is twofold: efficient solution algorithms for SDP have come 

to light in the past few decades, and SDP finds applications in combinatorial optimization and 

engineering. One could easily be led to believe that the field of SDP originated in this decade. A 

glance at a bibliography of SDP papers indeed indicates an explosion of research effect, starting 

around 1991. A closer look reveals that interest in this class of problems is somewhat older, and dates 

back to the 1960's [3].  

 

Semidefinite optimization is concerned with choosing a symmetric matrix to optimize a linear 

function subject to linear constraint and a further constraint that the matrix be positive semidefinite 

[4]. Semidefinite programs can be regarded as an extension of linear programming where the 

componentwise inequalities between vectors are replaced by matrix inequalities. SDP unifies several 

standard problems (e.g., linear and quadratic programming), and finds many applications in 

engineering and combinatorial optimization [5 - 6]. 

In this paper, we will exploit semidefinite relaxation in MPC framework and this work was 

motivated by a previous work in [7], where semidefinite relaxation was applied to an optimal 

production problem. In [7], semidefinite relaxation was applied to a linear program subject to 

inequality constraints, while in this paper we will consider quadratic program subject to inequality 

constraints in MPC setting. This paper is organized as follows: section 2 outlines the preliminaries 

needed in solving this kind of problem, section 3 presents the problem formulation of semidefinite 

relaxation, section 4 presents the simulation results and section 5 provides conclusion. 

 

2.0 Preliminaries 

In this section, we will look at the theory needed to carryout semidefinite relaxation. 

2.1 Semidefinite Program 

A wide variety of problems can be cast or recast as SDP problems, that is, problems of the form 

          

            ( )                                (2.1) 

where 

 ( )     ∑      
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where      is the variable. The problem data are the vector      and     symmetric 

matrices          
   . The inequality sign in  ( )    is positive semidefinite, i.e.,    ( )  

  for all       

We call the inequality  ( )     a linear matrix inequality and the problem (2.1) a semidefinite 

program. SDPs are convex optimization problems with a linear objective function and linear matrix 

inequality (LMI) constraints. Though the form of the SDP (2.1) appears very specialized, it turns out 

that it is widely encountered in systems and control theory, optimal production problem, merger of 

firms’ problem and Huber penalty function [8]. 

 2.2 Linear Matrix Inequality 

The result in this paper is based on linear matrix inequalities LMIs. LMI techniques are now 

well-rooted as a unifying framework for formulating and solving problems in control theory with 

remarkable simplicity [9]. 

2.2.1  History: The most famous LMI in control is the Lyapunov inequality for the stability of LTI 

systems         , which was originally considered over 100 years ago (i.e. 1890) and can be 

solved analytically by solving a set of linear equations. In the 1940's small LMIs were solved by 

hand, applying Lyapunov's methods to real control engineering problems (Lur'e, Postnikov etc.). 

Yakubovich was the first to make systematic use of LMIs along with the “S-procedure” for proving 

stability of nonlinear control systems. The works of Popov and Willems on optimal control outlined 

the relationship between the problem of absolute stability of automatic control,    theory and LMIs. 

Willems in particular, mentions LMIs as potentially powerful tools for system analysis: 

The basic importance of the LMI seems to be largely unappreciated. It would be interesting to 

see whether or not it can be exploited in computational algorithms, for example [10]. 

For more detail, the reader is referred to [11]. 

2.2.2  Definition:  A linear matrix inequality (LMI) has the form: 

 ( )     ∑        
 
                                 (2.2) 

where           
       are given, and  ( )    means that  ( ) is positive definite, i.e.  

   ( )             .                              (2.3) 

The symmetric matrices            are fixed and   is the variable. Thus, F(x) is an affine 

function of the elements of x. The set *   ( )   + is convex, that is, the LMI (2.2) forms a convex 

constraint on x and need not have smooth boundary. This can be seen in the following [12]: let x and 

y be two vectors such that  ( )    and  ( )   , and let   (   ). Then 

 (   (   ) )     ∑ (    (   )  )  
 

   
 

                                                                               (   )    ∑      (   )∑     
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                                                                              ( )  (   ) ( ) 

                                                                              (2.4) 

             Equation (2.4) is a strict LMI and is equivalent to a set of n polynomial inequalities in x, 

requiring only that F(x) be positive semidefinite and is referred to as nonstrict LMI. The strict LMI is 

feasible if the set *   ( )   + is nonempty (a similar definition applies to nonstrict LMIs). Any 

feasible nonstrict LMI can be reduced to an equivalent strict LMI that is feasible by eliminating 

implicit equality constraints and then reducing the resulting LMI by removing any constant nullspace 

(see [5] page 19). Our focus is on nonstrict LMIs for convenience. 

2.2.3 Multiple LMIs can be expressed as a single LMI:  One of the advantages of representing 

control problems with LMIs is the ability to consider multiple control requirements by appending 

additional LMIs. Consider a set defined by n LMIs: 

               ( )      ( )        ( )                                                                          (2.5) 

            Then an equivalent single LMI is given by 

             ( )     ∑          *  
 
   ( )   ( )     ( )   +                                             (2.6) 

            where 

                   *   ( )    ( )      ( )            +                                                     (2.7) 

 

                   

 The following Lemma will be used in the derivation of the main result. 

Lemma 1: The Schur complement converts a class of convex quadratic nonlinear inequalities that 

appears regularly in control problems to an LMI. The basic idea is as follows: the LMI       

[
 ( )  ( )

 ( )  ( )
]                                                                 (2.8) 

 where  ( )   ( )   ( )   ( ) , and S(x) depend affinely on x, is equivalent to the matrix 

inequalities 

  ( )     ( )   ( ) ( )   ( )                                                                            (2.9) 

             or equivalently, 

             ( )     ( )   ( )  ( )   ( )                                                                             (2.10) 

      

           Proof: Assume 

           [
 ( )  ( )

 ( )  ( )
]     

             and define 

              (   )  [
 
 
]
 

[
 ( )  ( )

 ( )  ( )
] [
 
 
]                                                                                     (2.11) 

            Then,  
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             (   )      ,   -                                                                                                        (2.12)   

            First, consider u = 0. Then 

             (   )     ( )         ( )     

            Next consider 

               ( )   ( )   with      

           Then, 

            (   )    ( ( )   ( ) ( )   ( ) )         

                           ( )   ( ) ( )   ( )      

           Now assume 

           ( )   ( ) ( )
   ( )     ( )                                                                                (2.13) 

          with F(u, v) defined in (2.11). 

          We will fix u and optimize over v. 

             
                                                                                                                  (2.14) 

          
Since R > 0, (2.14) gives a single extrema            Substituting this into (2.11) 

gives ( )    (        ) . Since (        )     the minimum of  ( ) occurs for u = 0, 

which also implies that v = 0. Thus the minimum of  (   ) is positive definite. QED 

 

2.2.4 S-procedure: The S-procedure greatly extends the usefulness of LMIs by allowing non-LMI 

conditions that commonly arise in non-linear systems analysis to be represented as LMIs (although 

with some conservatism). The S-procedure can be applied to quadratic functions as well as quadratic 

forms as is discussed in this section. Let pFF ,...,0 be quadratic functions of      : 

   ( )   
       

                   
                                                               (2.15)        

            The existence of             , such that 

              ( )  ∑     ( )    
 
                                                                                                    (2.16) 

            implies that   ( )       such that 

              ( )                                                                                                                      (2.17) 

     This is true, because if             exist such that (2.16) holds for all   ( )      

                                                         

Then, 

   ( )  ∑     ( )    
 
                                                                                                 (2.18) 

 Remark 1: If the functions are affine, then (2.16) and (2.17) are equivalent; this is the Farkas [13] 

lemma. 

            Note that (2.16) can be written as 
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             (   )  [
    
  
   

]  ∑   
 
   [

    
  
   

]   ,                                                                    (2.19) 

            Hence the above S-procedure can be equivalently written in terms of quadratic forms and 

strict inequalities with similar proof to the one above. Let          
   

 
be symmetric matrices. 

If there exists              such that 

   ∑        
 
                                                                                                                  (2.20) 

            then,              such that                                                                 (2.21) 

            
 

  3.0  Problem formulation of semidefinite relaxation  

 In this section, we formulate the MPC problem using the LMI approach explained in this 

paper, rather than QP method. 

 3.1 Basics of quadratic programming in MPC 

  In this section, we will remind the reader of the basic relations of MPC and fix notations. 

 Consider a nominal linear discrete-time system described by 

 (   )    ( )    ( )

 ( )    ( )
}                                                                                                      (3.1) 

 where  ( )     and  ( )     are the state and control vectors respectively and  ( ) is 

assumed measured,               and   belongs to the time set   of nonnegative integers: 

  ,       -  Since we are restricting our analysis to linear time invariant systems, we will take the 

initial time to be 0 for simplicity. When the horizon is updated, we assume that all indexing is 

changed so that the new initial time is still zero. 

 By iterating the model (3.1), we get a matrix which can be represented as 

         ̃   ̃ ( )   ̃ ̃.          (3.2) 

 For input and state (or output) constraints of the form: 

  ( )           
   ( )              

}                                                                                                           (3.3) 

 Using linear transformation, the state constraint is transformed into 

   ̃        ( ), 

 while the input constraint is transformed into 

   ̃    . 

 Augmented constraint for quadratic programming will be 

[
  
  
]  ̃  [

      ( )
  

]        ̃    .       (3.4) 

The standard quadratic cost function to be minimized is represented by 

 ( )  ∑ ( ( )   ( )   ( )   ( ))   
   ,       (3.5) 
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in which   and   are positive definite, symmetric weighting matrices. In model predictive control 

framework only the first control move  ( ) is injected into the plant. At the next sample time, (3.5) is 

solved with the new measured state as its initial condition. To construct the quadratic cost function, 

which can be solved on-line, we iteratively solve (3.5) and substitute (3.2) to obtain 

 ( )   ̃   ̃     ̃.          (3.6) 

For further details see Chapter 2 of [14] and [15]. 

3.1 Method 

  The problem to be minimized is 

          ⏟
 ̃

 ̃   ̃     ̃ 

                                 ̃           ̃                                                                    (3.7) 

                   is positive semidefinite,            
        

    and       . We found the 

equivalent of      in terms of new variables     and      as follows. We can write 

        ̃   ̃     ̃    (      ̃)   
 (      ̃)   ̃

   ̃     ̃                               (3.8) 

      The right hand side of (3.8) is rewritten as 

        (      ̃)  , ̃  - [
   

 

 
  
  

   
 

 
        

   
] [
 ̃
 
]    .                                              (3.9) 

     If we impose the constraint that      then for all  ̃ such that       ̃   , we have that   (   

   ̃)   . It follows (3.9) that –    is a lower bound on  ̃   ̃     ̃ for all     such that 

          [
   

 

 
  
  

   
 

 
        

   
]   . 

      It follows that 

                      

          

{
 
 

 
 

   

[
   

 

 
  
  

   
 

 
        

   
]

    }
 
 

 
 

.                                                     (3.10) 

       For ease of coding in matlab, (3.10) was solved using 

                        

          

{
 
 

 
 

   

[
   

 

 
  
  

   
 

 
        

   
]

    }
 
 

 
 

.                                                     (3.11) 
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       Problems (3.10) and (3.11) are convex. Note that since the original problem in (3.7) is convex, it 

follows that (3.10) and (3.11) give the exact solution [16].  

             

4.0 Simulation Results 

 In this section, we present an example that illustrates the implementation of this semidefinite 

relaxation approach for constrained MPC. The simulations were performed on a PC with Pentium IV 

processor and we use the software LMI control Toolbox in the MATLAB environment to compute the 

solution. 

 Consider the distillation column used in [17], which was modified for our purpose to obtain the 

following discrete-time parameters at a sampling time of         : 

  

[
 
 
 
 
 
 
   

 

  
   

   
 

  
  

    
 

   
 

     
 

  ]
 
 
 
 
 
 
 

    

[
 
 
 
 
 
   

  
     

  
 
 ]

 
 
 
 
 

   [
    
    

] 

 

The input constraint was   (     )      , while the state constraint was   (     )   . We 

specify the design parameters     (       ) and          . Given an initial state  ( )  

,          - , Figures 1 and 2 illustrate the simulation results for the control and output of 

the system under consideration. Furthermore, in the presence of constraints, no violations occurred. 

Thus the existence of a feasible solution ensures constraint satisfaction.  

  
    

Figure 1: Control for the semidefinite relaxation method 
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Figure 2: Output for the semidefinite relaxation method 

 

6.0 Conclusion 

 

  In this paper, we developed a semidefinite relaxation algorithm for MPC problem subject to 

constraints on the input and states, which was solved in polynomial time. We have presented a method 

to use semidefinite relaxation within quadratic programming. The solution value of the relaxation is 

used as a bound for the corresponding quadratic programming cost function. The results were 

impressive with no constraint violation. In the example, the results were better in performance to the 

results obtained in [17], although a different technique was used, as our results converge to zero on 

time. The optimal cost obtained was the same for both the QP and semidefinite relaxation methods. 

The result guarantees a simpler approach that will be further investigated for other properties 

associated with MPC. 
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