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Abstract 

In this article, we investigate the synchronization of two identical four dimensional Rabinovich 

hyperchaotic systems evolving from different initial conditions.  The active control technique is 

used to design control variables which enable the states variables of the two hyperchaotic 

systems to globally asymptotically achieve synchronization. The results show that the error state 

variables move hyperchaotically with time when the controllers are deactivated for         

while, the error converge to zero when the controllers are activated for     .  The system was 

successfully applied to secure communication using the additive encryption scheme to embed a 

signal in a component of the system. 
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1. Introduction  

In the last few years, synchronization of chaotic systems have received considerable 

interest among scientists in various fields. The results of chaos synchronization are utilized in 

biological systems [19,20], chemical reaction, secret communication and cryptography[24-26], 

nonlinear oscillator field, economic principles [21], finance [22,23]  and some other fields.  The 

first ideal of synchronizing two identical chaotic systems with different initial condit ions was 

introduced by Pecora and Carroll [1] and the method is realized in electronic circuits. 

Synchronization technique has improved in recent years, and many different methods are applied 
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theoretically and experimentally to synchronize the chaotic systems. Various active and 

nonlinear methods were used for chaos synchronization of two identical systems. Most of the 

works, however, considered low dimension chaotic systems with one positive Lyapunov 

exponent. Hyperchaotic systems possessing at least two positive Lyapunov exponents have more 

complex behaviour and abundant dynamics than chaotic systems and are more suitable for 

engineering applications such as secure communication. Hence, how to realize hyperchaotic 

systems synchronization is interesting and challenging work. Fortunately, some existing method 

of synchronizing low dimensional chaotic systems like adaptive control, active control, active 

backstepping control, sliding mode control methods can be generalized to synchronize 

hyperchaotic systems [16-18]. 

At first sight it is hard to understand what the practical use of an abstract theory like the 

synchronization theory can be. However, the theory has already been used in some 

communication devices. So synchronization can be used for encoding and communication. 

Another engineering application is the synchronization of two or more (industrial) robots. If 

necessary, they can be made to behave the same. Also the understanding of some biological 

phenomena (concerning pancreas, heart and neurons but also the behaviour of fireflies) is 

improved by the theory. Some researches has been done on the synchronization of spatio 

temporal systems Like fluid flows (also for other physical applications of synchronization). In 

quantum theory research is done on quantum clock synchronization. However, because of the 

very special dynamical behavior of quantum systems this kind of synchronization is difficult to 

compare with the 'standard' theory on synchronization and its study has a more information 

theoretical flavour. 
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Many methods have been proposed to achieve chaos control and  synchronization, such 

as the passive control method Wang et al [13], backstepping design method Yassen [3],  

impulsive control method Wen et al [13], adaptive control Yassen [5], active control, Njah [7], 

sliding mode control Wang et al [6]. Bai and Lonnggren [8] proposed the method of identical 

chaos synchronization using active control. The technique was latter generalized to non-identical 

systems by Ho and Hung [9], Thus breaking the limit of it applicability beyond identical chaotic 

systems. Recently, the generalized active control (GAC) scheme was employed by Chen and Lee 

[10] to synchronize non-identical systems consisting of Lorenz, Chen and L ̈ systems with a 

new chaotic systems attributed to Chen and Lee [10]. Chaos synchronization  using the active 

control has continue to receive wide application in variety of dynamical systems including 

geophysical model [11], spatiotemporal dynamical systems [12] etc.  Despite the numerous 

advantage of active control method of synchronization, its application to synchronization of 

hyperchaotic systems with respect to secure communication has not been adequately explored. 

The aim of this work is to synchronized two hyperchaotic 4D Rabinovich systems using 

active control method.  We also aim to apply the successful synchronization to secure 

communication using the additive encryption scheme.  The organization of the rest of this paper 

is as follows: Section 2 deals with system description. Section 3 deals with synchronization of 

the hyperchaotic systems. Section 4 is concern with application to secure communication, while 

section 5 concludes the paper.  

2. Theoretical Consideration  

In Liu et al., [14], reported a controlled 4D Rabinovich hyperchaotic system as follows 
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where a,b,d,h,k are positive constant parameters. When  2756114 ),,.,,,)= ((a,b,d,h,k the 4D 

Rabinovich hyperchaotic system (1)  has four Lyapunov exponents. LE1 = 0.3066,  LE2 = 

0.0582, LE3 = -0.000, LE4 = -6.3642. 

And the Lyapunov dimension is DL = 3.0573.  Moreover, numerical simulations have 

verified that system (1) indeed has a hyperchaotic attractor when (a,b,d,h,k) = (4,1,1,6.75,2).[14].   

The literature, Liu et al., (2010) also pointed out that the theoretical and numerical study 

indicates that chaos and hyperchaos are produced with the help of a Lienard-like oscillatory 

motion around a hypersaddle stationary point at the origin.  The circuit implementation of the 4D 

Rabinovich hyperchaotic system has been carried out [15]. 

3. Complete synchronization using active control 

Let (1) be the drive, then, the response system is 
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where 4,3,2,1),( itui are control functions to be determined.  Subtracting the drive equation (1) 

from the response (2), we obtain the error dynamics as 
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Fig.1. Phase portraits of hyperchaotic attractors of (1) with                    
and       
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where  4,3,2,1,  ixye iii  . In the absence of the controls, the error dynamics system (3) 

would have an equilibrium at (0,0,0,0).  If the controls are chosen such that the equilibrium 

(0,0,0,0) is unchanged, then the synchronization between the drive system(1) and the response 

system(2) reduces to that of finding the asymptotic stability of the error system(3) at equilibrium. 

To achieve this, the control functions are re-defined to eliminate terms in (3), which cannot be 

expressed as linear terms in 4321 ,, eandeee   as follows: 



6 
 

)(

)(

)(

)(

444

321213

231312

132321

tvxu

tvxxyyu

tvxxyyu

tvxxyyu









         (4) 

Substituting (4) into (3) yeilds 
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Using the active control method, a constant matrix A is chosen which will control the error 

dynamics (3) such that the feedback matrix 
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where 
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In (7), the four eigenvalues             have been chosen as             in order that a 

stable and synchronized state is achieved. 

      To numerically verify the effectiveness of the proposed synchronization scheme, we 

simulate the dynamics of the drive system (1) and the response system(2). In  the simulation, the 

fourth order Runge-Kutta algorithm is empolyed with time  step of       and fixing the 

parameter values                    and     to ensure hyperchaotic dynamics of 

the state variables. We then solved equations (1) and (2) with the control functions with initial 
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conditions of the drive system and the response given as (               )  and (       ) 

respectively. The results show that the error state variables move hyperchaotically with time 

when the controllers are deactivated for         while, the error converge to zero when the 

controllers are activated for      as shown in Fig. 2.  The results depicted in Fig. 2 show that 

complete synchronization of systems (1) and (2) have been achieved. 

 

Fig. 2. Error dynamics between the two new hyperchaotic systems with the controller 
deactivated for        and activated for      

4. Secure information transmission via synchronization  

The basic idea of chaotic secure communication is based on using chaotic nonlinear 

oscillator as a broadband signal generator. The signal is combined with message to produce 

unpredictable signal which is transmitted from the transmitter to the receiver. At the receiver the 

pseudo-random signal is generated through the inverse operation, original message is recovered. 

In order for this scheme to properly work, the receiver must synchronize robustly enough so as to 

admit the small perturbation in the drive signal due to the addition of the message. The power of 

the information signal must be much lower than that of the chaotic signal to effectively bury the 
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information signal. The signal from the master serves two purposes: to control the slave system 

so as to synchronize it with the master and to carry the information signal just like any other 

communication scheme, the purpose of chaos secure communication is to hide message during 

transmission.  The suitability of chaotic systems for application in secure communication is 

based on the feature of chaotic carriers such as: broadband or wide spectrum ( which reduces the 

fading of the signal and increase the transmission capacity); orthogonality (which reduces signal 

distortion); sensitivity to slight changes in the initial conditions and system parameter as well 

complexity and noise-likeness dynamics which lead to unpredictability, thereby making 

extraction of hidden message difficult [13]. The secret keys are the set of value of the system 

parameters and since the system parameter are real numbers, the number of possible keys is 

infinite, thereby, enhancing confidentiality. 

In this chaotic masking scheme, encryption is achieved by mixing information signal 

with the chaotic carrier signal using mixing algorithm which is simply a function of information 

and chaotic carrier signals. So far many mixing algorithm have been proposed to achieve chaotic 

masking: some of which are additive masking; multiplicative masking etc [13]. Here we 

demonstrate our secure communication scheme using the additive encryption masking scheme. 

The information signal is chosen to be a periodic function        sin       , with this 

choice the chaotic carrier    remain chaotic. The encrypted information  is given by the masking 

algorithm         .  Consequently, the decrypted information      is given by the inverse 

function         . The chaotic signal     of the master is transmitted to the slave via a 

coupling channel for synchronization between the master and the slave, the information signal  

   is masked in the encrypted signal    and transmitted to the receiver. The decrypted 

information    is extracted by inverse function. The schematic diagram for the communication 
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scheme is shown in Fig. 3 while, the numerical simulation results for the communication scheme 

is shown in Fig. 4. 

 

Fig. 3: Block diagram of diagram of a typical chaotic communication system. 

 

Fig.4: Chaotic masking of signals using the synchronized 4D Hyperchaotic Rabinovich 
system.  (a.) original information (sm); (b). encrypted signal (em); (c.) decrypted signal 
(rm); (d.) decrypted error (de). 
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5. Conclusion 

We have investigated the synchronization of two identical four dimensional Rabinovich hyper-

chaotic systems evolving from different initial conditions.  The active control technique is used 

to design control variables which enable the states variables of the two hyperchaotic systems to 

globally asymptotically achieve synchronization. The synchronization result was applied to 

secure communication.  Numerical simulation results are presented to show the effectiveness of 

the proposed communication scheme. 
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