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Abstract 

This paper considers the characterizing properties used in the definition and recognition of real-

valued single-variable quasiconcave functions. Through a presentation of the link between the 

first and second order conditions for quasiconcavity, it presents a characterization which unifies 

these various characterizing properties. Thus it provides an equivalence for the various 

definitions of quasiconcavity. 
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1 Introduction 

As generalizing as analyses on    may look, it is necessary to consider works on   especially if 

they form the bases for works on   . Further the complexity and intimidating nature of works 

presented in    leave the unexposed and unexperienced handicapped and confused. This work 

attempts to solve such problems for quasiconcave functions. It presents a characterization of real-

valued single-variable quasiconcave functions. This characterization unifies the various 

characterizing properties of quasiconcave functions. 

A quasiconcave function is a real-valued function defined on an interval or a convex subset of a 

real vector space such that the inverse image of any set of the form        is a convex set. All 

convex functions are quasiconcave, but not all quasiconcave functions are concave. So 

quasiconcavity is a generalization of concavity. 

Quasiconcave functions need not necessarily be differentiable; however, this work considers 

differentiable real-valued single-variable quasiconcave functions. 
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Definition 1.1 If        and         , then             is a convex combination of   

and  . Geometrically, a convex combination of   and   is a point somewhere between   and  .  

Definition 1.2 A set     is convex if         implies              for all         . 

The definition of a convex set immediately implies that     is convex if and only if   is either 

empty, a point, or an interval. 

Throughout this work we suppose that     is a convex subset of  . 

Definition 1.3         is concave if for any      , we have, for all           

                                                                                                          (1.1) 

      is strictly concave if for any      , with    , we have, for all          

                                                                                                          (1.2) 

In words, a function is concave if its value at the linear combination between two points in its 

domain is greater than or equal to the weighted average of the function’s values at each of the 

points considered 

In practical terms, the difference is that concavity allows for linear segments, but strict concavity 

does not. Concavity allows for ascending and descending linear segments. Vertical segments are 

excluded because of     . Horizontal segments are excluded, because such lines would allow 

chords to be drawn above the curve, violating the requirements of equation (1.1). 

2 Quasiconcave functions 

Definition 2.1 A function           is called quasiconcave if its domain and all its 

superlevel sets 

                                                          {       |      }                                              (2.1) 

for     are convex.  

A function is quasiconvex if  –   is quasiconcave, that is, every sublevel set 

{       |      } is convex. A function that is both quasiconcave and quasiconvex is 

called quasilinear. A function is quasilinear if its domain, and every level set  { |      }  is 

convex. 

Quasiconcavity requires that each sublevel set be an interval (including, possibly, an infinite 

interval).  
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2.2 Examples of Quasiconcave Functions 

The following are examples of quasiconcave functions on  : 

(i) Define        by 

                                                           {
                  

                   
                                            (2.2) 

Since   is non-decreasing, it is quasiconcave. 

(ii) Define        by 

                                                          {
                 
                  

                            

                                              (2.3) 

Since   is non-decreasing, it is both quasiconcave and quasiconvex on  . But   is discontinuous 

at    . Moreover,   is constant on      , and hence every point in this open interval is a local  

maximum as well as a local maximum. However, no point in       is either a global maximum 

nor a global minimum. Finally,       , but   is neither a local maximum nor a local 

minimum. 

(iii) The logarithm function   

                                                                                                                                       (2.4) 

 on      is quasiconcave (and quasiconvex, hence quasilinear). 

(iv) The Ceiling function  

                                                                 {   |   }                                                (2.5) 

 is quasiconcave (and quasiconvex) 

These examples show that quasiconcave functions can be discontinuous [1]. 

We can give a simple characterization of quasiconcave functions on  . We consider continuous 

functions, since stating the conditions in the general case is cumbersome. A continuous function 

      is quasiconcave if, and only if, at least one of the following conditions holds: 

 

   is nonincreasing 

   is nondecreasing 
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 there is a point         such that for     (and        ),   is nondecreasing, and 

    (and        ), and   is nonincreasing [1] 

3. The Line Segment and Local Minimum Property                                                                          

It is quite difficult to get simple necessary and sufficient conditions for quasiconcavity in a case 

where   is twice continuously differentiable. Thus we will need the following definitions 

Definition 3.1 Let     be a nonempty open interval, then        has the line segment 

minimum property if and only if for      ,    , 

                                                    {                    }                                     (3.1) 

exists.                                                                                                                                                  

That is, the minimum of   along any line segment in its domain of definition exists. 

It is easy to verify that if   is a quasiconcave function defined over the interval  , then it satisfies 

the line segment minimum property (3.1), since the minimum will be attained at one or both of 

the endpoints of the interval; that is, the minimum will be attained at either      or      (or both 

points) since              for       is equal to or greater than    {          } and 

this minimum is attained at either      or      (or both points). 

Definition 3.2 Let    , the function   defined over an interval    attains a semistrict minimum 

at            if and only if there exist      and      such that      ,         and  

                                                                                                                                       (3.2) 

for all     such that                 ; 

                                                                                                                                 (3.3) 

and 

                                                                             [2].                                              (3.4) 

If     just satisfies (3.2) at the point   , then it can be seen that it attains a local minimum at    . 

But conditions (3.3) and (3.4) show that a semistrict local minimum is stronger than local 

minimum: for   to attain a semistrict local minimum at such   , we need     to attain a local 

minimum at such   , but the function must eventually strictly increase at the end points of the 

region where the function attains the local minimum. Note that     attains a strict local minimum 

at such            if and only if there exists     such that               and  
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                                                                                                                                       (3.5) 

for all   such that               but      . 

It can be seen that if    attains a strict local minimum at    , then it also attains a semistrict local 

minimum at   . Hence, a semistrict local minimum is a concept that is intermediate to the 

concept of a local and strict local minimum [3, 4, 5]. 

4. Characterizations of Quasiconcave Functions 

The following characterizations will be helpful in the main result in section 6. 

Theorem 4.1 The Minimum Function Value Test Characterization of Quasiconcave 

Functions: Let     be a closed interval, a function        is quasiconcave if and only if 

for       and           

                                                               {         }.                                    (4.1)                                                

The above result means that the line segment joining    to    that has height equal to the 

minimum value of the function at the point   and   lie below (or is coincident with) the graph of  

  along the line segment joining   to    [6, 7, 8, 9, 10]. This is a variant of Jensen’s inequality 

that characterizes quasiconcavity. 

If   is concave over  , then 

                                                                        (by (1.2))                  (4.2) 

                                                                         {         },                                              (4.3)  

where the second inequality results from the fact that                 is an average of 

     and     . Thus if   is concave it is also quasiconcave. This characterization can be written 

in an equivalent form as shown in the next result, thus we can use them interchangeably. 

Theorem 4.2 The Function Value Comparison Characterization of Quasiconcavity 

 Let       be open, then       is quasiconcave if and only if for      ,      

                                                                        [11, 12].                  (4.4)  

This means that the function   is quasiconcave if           implies that its value at a convex 

combination of two points in its domain is greater than or equal to      which is the function 

value of the smaller function value of the two points.   
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4.3 The Derivative-Based Characterization of Quasiconcavity  

Theorem 4.3a  First Order Condition: Let       be a once differentiable function 

defined over the open interval    ,      ,    ;  then   is quasiconcave if and only if  

                                                                                                                 (4.5) 

In this characterization we assumed that   is open and that the derivatives of   exist and are 

continuous functions over   [11, 13]. 

Now consider the following result which is contrapositive to Theorem 4.3a making them 

(Theorem 4.3a and Corollary 4.3b) logically equivalent. 

Corollary 4.3b First Order Condition: Let     be an open interval in   and suppose  

       is a once differentiable function, then   is quasiconcave if and only if  

                                                                            [7].                   (4.6)  

4.4 Line Segment Minimum Property Characterization of Quasiconcavity 

Theorem 4.4 Suppose          has the line segment minimum property for    , then   

is quasiconcave if and only if  

                                                                                                     (4.7) 

does not attain a semistrict local minimum for any   such that      . 

4.5 The Derivative-Based Characterization of Quasiconcavity-Second Order Condition 

Theorem 4.5: Let     be a nonempty open interval. Then        a twice differentiable 

function is quasiconcave if and only if for          with     

                                                              
                                                                                                                                                                      

                

 

does not attain a semistrict local minimum at     [2]. 

4.6 Upper Level Set Characterization of Quasiconcave Functions 

Theorem 4.6: Let     be a nonempty open interval. The function        is quasiconcave if 

and only if for every             the upper level set  

                                    {       |      }                                            (4.9) 

is convex. 
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5. A Characterization of Quasiconcave Functions through the First and Second Order 

Conditions 

Next we present a result which characterizes quasiconcavity through the first and second order 

conditions without necessarily involving any of the conventional definitions. It forms a part of 

the proof for the result in the next section. 

Theorem 5.1 Let          be a twice differentiable quasiconcave function and let   be 

nonempty and open, then the following statements are equivalent. 

(i)                                                                                             (5.1)     

(ii)                                                                                               (5.2)  

and   

                                                                                                             (5.3)          

does not attain a semistrict local minimum at      

Proof: Suppose  

                                                                                                           (5.4) 

then  

                                                                  ,                                            (5.5) 

Since   is twice differentiable at  , we have 

    (        )                   
 

 
                               (5.6) 

From (5.5) and (5.6) we have  

                                          
 

 
                (        )                (5.7) 

Since             , (5.7) becomes 

                                          
 

 
(      )

 
        (        )                                   (5.8) 

Dividing through by    and letting    , we have that  
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Furthermore, since           means that   attains a minimum at   with     it follows that 

      so that                      . 

Thus  

                 

does not attain a semistrict local minimum at    . 

Conversely, suppose                               and                      

does not attain a semistrict local minimum at    , it follows by Taylor’s expansion 

                        (        )                   
 

 
                                 (5.9) 

that  

                   (        )       
 

 
                 and                         (5.10) 

                                         (        )                                               (5.11) 

Thus 

                                      (        )                                                     (5.12) 

and hence from (5.9)  

                                                                                                               (5.13) 

 

 

 

 

 

 

6. Sufficient Conditions for Quasiconcavity of Twice Differentiable Real-Valued Single 

Variable Functions 
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Theorem 6.1 Let        be a twice differentiable function over the open interval      with 

         ,         . Suppose   has the line segment minimum property, then the 

following statements are equivalent: 

(i)    { |                          }                                                                   (6.1)                                          

is convex. 

(ii)                                                                                              (6.2)  

(iii)                                                                                             (6.3)     

(iv)                                                                                                (6.4)  

and   

                                                                                                              (6.5)          

does not attain a semistrict local minimum at      

(v)                                                                                                               (6.6)     

does not attain a semistrict local minimum for any   such that      . 

(vi)                   {         }                                                                      (6.7) 

Proof. We show that                                   

         . Let                          

Since      is a convex set               . By the definition of      

                     

          . We show that not (iii) implies not (ii). Not (iii) means that there exist               

          such that 

                                                                                                                                   (6.8) 

and 

                                                                                                                                        (6.9) 

Define the function of one variable   for       by 
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                                                               (        )                                                (6.10) 

It can be verified that 

                                                                                                                       (6.11) 

It can also be verified that the derivative of      for       can be computed as follows 

                                                        (        )                                              (6.12) 

Evaluating (6.12) at     and using (6.8) shows that  

                                                                                                                                         (6.13) 

Since the first order partial derivative of   is continuous, it can be seen that (6.13) implies the 

existence of a   such that 

                                                                                                                                      (6.14) 

and  

                                                                                                                                        (6.15) 

for all   such that      . 

Thus      is a decreasing function over this interval of  ’s and thus  

                                (        )                                         (6.16) 

But (6.14) and (6.16) imply that 

                                                                                                                        (6.17) 

where      . Since (6.14) implies      , (6.17) contradicts (ii). 

          . Since   is open, there exists     such that when | |   ,           . 

Since   is twice differentiable at  , by Taylor’s Theorem, we have 

             (        )                   
 

 
                               (6.18) 

Observe that if 

                                                                                                                                 (6.19) 



11 
 

then 

                                                                                                                               (6.20) 

Now, since                                it follows that 

                                                                      .                                              (6.21) 

From (6.18) and (6.21) we have  

                                       
 

 
                (        )                 (6.22) 

Since             , (6.22) become 

                                        
 

 
(      )

 
        (        )                                   (6.23) 

Dividing through by    and letting    , we have that  

               

Furthermore, since           means that   attains a minimum at   with     it follows that 

      so that                      . 

Thus  

                 

does not attain a semistrict local minimum at    . 

        . It is sufficient to show that     is equivalent to the statement 

                                         (        )                                              (6.24)                       

does not attain a semistrict local minimum at    . 

Suppose      occurs, then      attains a strict local minimum at     and hence cannot attain a 

semistrict local minimum at    . 

        .  This is equivalent to showing that not      implies not    . Suppose   is not 

quasiconcave, then there exist       and    such that          and  

                                                              {         }                                    (6.25) 
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Define                 for      . Since   is assumed to satisfy the line segment 

minimum property there exists a    such that       and  

                                                            {            }                                         (6.26) 

The definition of   and (6.25) show that    satisfies        and  

                            (         )   (           )      {         }                (6.27) 

Thus   attains a semistric local minimum, which contradicts       

        . Let          ,           and        ,  

                                                             and                                                        (6.28) 

From (vi), we have that 

                                                         {         }                                     (6.29) 

where the last inequality follows by using (6.28). But (6.29) shows that                                                  

               and thus      is a convex set.    

6. Concluding Remarks                                                                                                                     

Although this characterization does not incorporate non-differentiable quasiconcave functions, it 

shows that differentiable quasiconcave functions which satisfy any of the defining properties 

stated in equations (4.1) and (4.4) to (4.9) equally satisfy all the other properties stated in 

equations (6.1) to (6.7) in the result above. 

The result further shows that if a given definition of quasiconcavity cannot be incorporated into a 

given scheme one can resort to another, thereby providing safe havens for a number of 

computational schemes. On the other hand, stemming from the interplay among these concepts, a 

given scheme can be refined to incorporate a desired definition or concept. 

As stated earlier some of these defining properties of quasiconcave functions do exist in 

optimization materials, however, to the best of my knowledge, this characterization which 

combines these properties, thereby giving a wider definition of quasiconcavity has not been 

achieved before now. Therefore this work puts us at a better horizon for recognizing 

quasiconcave functions. 
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