SYMMETRIC QUANTUM MARKOVIAN SEMIGROUPS

IBRAHIM, YUSUF

Department of Mathematics/Computer Science, Nigerian Defence Academy, Kaduna Nigeria * Email- yusufian68@yahoo.com

AND

EVWIEKPAEFE, ABRAHAM ESEOGHENE Department of Mathematics/Computer Science, Nigerian Defence Academy, Kaduna Nigeria Email- contact_abraham@yahoo.com

ABSTRACT

Using symmetric embeddings of the von Neumann algebra \mathcal{M} into Trunov non-commutative L_p -spaces, we study symmetric quantum Markovian semigroups. We obtained a characterization of the generator as a Dirichlet form for such symmetric Markovian semigroups.

Keywords: von Neumann algebras, non commutative L_p –spaces, quantum Markov semigroup, density matrix h^{α} , Dirichlet form.

1. Introduction:

Inspired by the work of Goldstein and Lindsay [1] on K.M.S-symmetric semigroups on von Neumann algebras, we study symmetric Markov semigroups within the context of Trunov's L_p - spaces defined over a von Neumann algebra \mathcal{M} . The construction of a tracially symmetric markov semigroups in the setting of a semi-finite von Neumann algebra \mathcal{M} admitting a faithful normal semi-finite trace τ on \mathcal{M} was initiated by Albeverio and Høegh-Krohn [2] in the seventies and developed by Davies and Lindsay [3] in the nineties. Their construction and analysis took place on the Segal $L_p(\tau)$ spaces which together with each of the interpolating spaces $L_p(\tau)$ ($0 \le p \le \infty$), is a subspace of a topological *-algebra $\mathcal{M}^$ of τ - measurable operators acting as closed densely defined operators on $L_p(\tau)$. Goldstein and Lindsay [1] extends it to the context of state φ on von Neumann algebras in the nineties, by the use of symmetric embedding of the von Neumann algebra into the Haagerup spaces L_p - spaces. In this paper we study symmetric markov semigroups using the embedding defined by them, on the algebra \mathcal{M} into the Trunov's space $L_p(\mathcal{M})$ [4].

2. PRELIMINARIES:

A von Neumann algebra is a *-subalgebra \mathcal{M} of $\mathcal{B}(\mathfrak{H})$ which is self-adjoint, contains the identity operator I and is closed in the weak operator topology. The weak operator topology is induced by the family of semi norms $\{p_{\xi,\eta}\}$ defined on \mathcal{M} by $p_{\xi,\eta}(x) = \sum |\langle x\xi, \eta \rangle|$, with $x \in \mathcal{M}, \xi, \eta \in \mathfrak{H}$. \mathcal{M}_+ denote the positive elements of \mathcal{M} , i.e $\mathcal{M}_+ = \{x \in \mathcal{M} : x \ge 0\}$. A linear positive functional φ on \mathcal{M} is called a state if $\varphi(1) = 1$. The space of all σ weakly continuous linear functionals on a von Neumann algebra \mathcal{M} is called the predual \mathcal{M}_* , we denote by $\mathcal{M}_{*,+}$ the positive part of \mathcal{M}_* . More details on von Neumann algebras will be found in [5,6,7]

We recall the Trunov construction of the L_p - spaces as follows; Let \mathcal{M} be semi-finite von Neumann algebra, with a faithful normal state φ , there exist a unique operator $\rho \in L_1^+(\mathcal{M})$ called the Radon-Nikodym derivative of the state with respect to the trace τ such that

$$\varphi(x) = \tau(x, \rho) = \tau(\rho, x), \qquad [8]$$

This representation enables one to define for each number $1 \le p \le \infty$ a certain norm on \mathcal{M} that is connected with φ . For any $x \in \mathcal{M}$, the operator $\rho^{1/2p} x \rho^{1/2p} \in L_p(\mathcal{M})$, and therefore the following definition make sense,

$$||x||_p = (\tau |\rho^{1/2p} . x. \rho^{1/2p}|^p)^{1/p}$$

This defines a norm on \mathcal{M} for each, $1 \le p \le \infty$, and we write $||x||_{\infty} = ||x||$, for $x \in \mathcal{M}$. This norm $||x||_p$ does not depend on the choice of the faithful normal semi-finite trace τ and is a norm on \mathcal{M} [6].

Let $L_p(\mathcal{M}) = \{x \in \mathcal{M} : ||x||_p < \infty\}$ be the completion of \mathcal{M} with respect to this norm, this completion we called the Trunov L_p –spaces, with $\mathcal{M} = L_\infty(\mathcal{M})$ in the usual norm $||.||_\infty$.

As for the *density matrix*, using functional calculus, we introduce the operator h^{α} for $\alpha \in \mathbb{R}_+$ as follows: Let h be a positive non-singular self-adjoint operator with spectrum sp(h). We denote by C(sp(h)) the von Neumann algebra of continuous real valued functions on sp(h). Let $f_{\alpha} \in C(sp(h))$ be defined by

$$f_{\alpha}(s) = s^{\alpha}, \qquad s \in sp(h).$$
 [9]

Then h^{α} is define as $f_{\alpha}(h)$ for real values of α . Hence we have $f_{\alpha}(h) = h^{\alpha}$. Now for a von Neumann algebra \mathcal{M} with a faithful normal trace τ . We assume that h^{α} satisfies the following three conditions;

- (i) $\tau(h^{\alpha}) < \infty$,
- (ii) $\tau(h^{\alpha}) = 1$,
- (iii) $\varphi(x) = \tau(x, h^{\alpha}) = \tau\left(h^{\frac{\alpha}{2}}, x, h^{\frac{\alpha}{2}}\right)$, where is a faithful normal state φ on \mathcal{M} .

With the preceding conditions, h^{α} is a trace class operator called the density matrix or the Radon-Nikodym derivative of the trace τ with respect to the state φ , that is, $\frac{\partial \tau}{\partial \varphi} = h^{\alpha}$, hence $h^{\alpha} \in L_1(\mathcal{M})_+$ - the set of trace class operators.

Now for $1 \le p \le q < \infty$, let $p = \frac{1}{1-t}$ and $q = \frac{1}{t}$, with 0 < t < 1 then $\frac{1}{p} + \frac{1}{q} = 1$. Since $h^{\alpha} \in L_1(\mathcal{M})_+$, we have $h^{\frac{\alpha}{2}} \in L_2(\mathcal{M})$, and hence $h^{(1-t)\alpha} \in L_p(\mathcal{M})$.

We now have the following definitions of technical terms :

Definition 1: symmetric embeddings of

(i)
$$\mathcal{M}$$
 into \mathcal{M}_* , by $i(x) = \tau \left(h^{\frac{\alpha}{2}} \cdot x \cdot h^{\frac{\alpha}{2}}\right), \quad x \in \mathcal{M}.$

(ii)
$$\mathcal{M}$$
 into $L_p(\mathcal{M})$, by $i^p(x) = \left(h^{\frac{(1-t)\alpha}{2}} \cdot x \cdot h^{\frac{(1-t)\alpha}{2}}\right), x \in \mathcal{M}.$

(iii)
$$L_p(\mathcal{M})$$
 into $L_1(\mathcal{M})$, by $\kappa(f) = \left(h^{\frac{\alpha t}{2}} \cdot f \cdot h^{\frac{\alpha t}{2}}\right) \quad f \in L_p(\mathcal{M}).$

Where $L_p(\mathcal{M})$, is the Trunov's L_P – space.

Definition 2: A linear operator $T: \mathcal{M} \to \mathcal{M}$ is called Markov if $0 \le x \le 1$ implies that $0 \le Tx \le 1$.

Definition 3: An operator T on L_p is called L_p -Markov if $0 \le f \le h^{(1-t)\alpha}$ implies that $0 \le Tf \le h^{(1-t)\alpha}$, $f \in L_p$.

Definition 4: A linear operator $T: \mathcal{M} \to \mathcal{M}$ is called Symmetric or tracially Symmetric, if

$$\tau\left(h^{\frac{\alpha}{2}}.Tx.h^{\frac{\alpha}{2}}y\right) = \tau\left(xh^{\frac{\alpha}{2}}.Ty.h^{\frac{\alpha}{2}}\right), \qquad x, y \in \mathcal{M}.$$

Definition 5: A Markov semigroup P_t on \mathcal{M} is a weak* -continuous semigroup consisting of Markov operators.

Definition 6: An L_P –Markov semigroup $(P_t)_{t\geq 0}$, is a strongly continuous contraction semigroup consisting of L_P markov operators.

Definition 7: A Markov Semigroup $(P_t)_{t\geq 0}$ is called Symmetric Markov Semigroup, if

$$\tau\left(h^{\frac{\alpha}{2}}.P_tx.h^{\frac{\alpha}{2}}y\right) = \tau\left(x \ h^{\frac{\alpha}{2}}.P_ty.h^{\frac{\alpha}{2}}\right) \quad \text{for} \quad x,y \in \mathcal{M}.$$

Definition 8: An L_P – Markov resolvent family $(R_{\lambda})_{\lambda \ge 0}$ is a strongly continuous contraction resolvent such that each λR_{λ} is L_P – Markov.

Definition 9: By a strongly continuous contraction resolvent we mean a family $(R_{\lambda})_{\lambda>0}$ of (everywhere defined) linear operators on \mathfrak{H} satisfying the following conditions,

- (i) $\lim_{\lambda \to \infty} \lambda R_{\lambda} x = x$ for $x \in \mathfrak{H}$
- (ii) λR_{λ} is a contraction on \mathfrak{H} for all $\lambda > 0$
- (iii) $R_{\lambda} R_{\mu} = (\mu \lambda) R_{\lambda} R_{\mu}$, for all $\lambda, \mu > 0$.

Definition 10: A closed densely defined operator G on $L_2(\mathcal{M})$ is called Dirichlet if G is real ,that is the domain of G is * -invariant and $Gx^* = Gx$ for $x \in D(G)$ and $\langle Gx, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \leq 0$ for all $D_h(G)$. Where D(G) is the domain of G and $D_h(G)$ is the domain of the self adjoint part of G.

Definition 11: With any $x \in L_2(\mathcal{M})_h$, the self adjoint part of $L_2(\mathcal{M})$, we associate an element x_e defined in [10] by the formula,

$$x_{e} = x - (x - h^{\frac{\alpha}{2}})_{+} = h^{\frac{\alpha}{2}} - (x - h^{\frac{\alpha}{2}})_{-}$$

we have that $x_e \le x$, $x_e \le h^{\frac{\alpha}{2}}$ and $h^{\frac{\alpha}{2}} \in L_2(\mathcal{M})$.

Definition 12: A non negative quadratic form \mathcal{E} defined on a dense subspace $D(\mathcal{E})$ of a Hilbert space \mathfrak{H} is closed if the domain $D(\mathcal{E})$ equipped with the norm $\|.\|_{\mathcal{E}}$ given by $\|x\|_{\mathcal{E}}^2 = \|x\|^2 + \mathcal{E}(x)$ is a Hilbert space. It is closable if there exists a closed form $\widehat{\mathcal{E}}$ extending \mathcal{E} , that is, $D(\widehat{\mathcal{E}}) \supset D(\mathcal{E})$ and $\widehat{\mathcal{E}}(x) = \mathcal{E}(x)$ for $x \in D(\mathcal{E})$. There exists in such a case a closed form $\overline{\mathcal{E}}$, called the closure of \mathcal{E} , which is the smallest closed extension of \mathcal{E} .

Definition 13: A nonnegative quadratic form \mathcal{E} on $L_2(\mathcal{M})$ with dense domain $D(\mathcal{E})$ is called Dirichlet if,

- (i) \mathcal{E} is real, that is $D(\mathcal{E})$ is * -invariant and $\mathcal{E}x^* = \mathcal{E}x$ for $x \in D(\mathcal{E})$.
- (ii) $x_+, x_e \in D_h(\mathcal{E})$ for $x \in D_h(\mathcal{E})$,
- (iii) $\mathcal{E}x_+ \leq \mathcal{E}x$ and $\mathcal{E}x_e \leq \mathcal{E}x$ for $x \in D_h(\mathcal{E})$.

where $D_h(\mathcal{E})$ is the self-adjoint part of $D(\mathcal{E})$.

3. RESULTS:

The main result in this section is theorem 2, which state, that the form generator of a symmetric Markov semigroup is a Dirichlet form. The converse of the theorem was obtained for tracially symmetric Markov semigroups acting on Segal L_2 -spaces by Albeverio and Høegh-Krohn [2]. We are now ready to embark on the proof of results ;

Theorem: 1

Let $(R_{\lambda})_{\lambda>0}$ be a strongly continuous contraction resolvent on $L_2(\mathcal{M})$ and G the generator of the semigroup $(P_t)_{t\geq 0}$. Then the following conditions are equivalent

- (i) each λR_{λ} is L_2 –Markov
- (ii) each P_t is L_2 -Markov

Proof:

(*i*)
$$\Rightarrow$$
 (*ii*)

This follows from the relation $P_t = s.t \lim_{n \to \infty} (n/tR_{n/t})^n$

$$(ii) \Rightarrow (iii)$$

Since P_t an L_2 –Markov contraction, then for $x \in L_2(\varphi)_h$

we have

$$x = \left(x - h^{\frac{\alpha}{2}}\right)_{+} + x - \left(x - h^{\frac{\alpha}{2}}\right)_{+}$$
$$x_{e} = x - \left(x - h^{\frac{\alpha}{2}}\right)_{+} = h^{\frac{\alpha}{2}} - \left(x - h^{\frac{\alpha}{2}}\right)_{+}$$

and also,

$$\langle \left(x-h^{\frac{\alpha}{2}}\right)_+, \left(x-h^{\frac{\alpha}{2}}\right)_- \rangle = 0.$$

Hence,

$$\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle = \langle P_t \left(x - h^{\frac{\alpha}{2}}\right)_+, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle + \langle P_t x - \left(x - h^{\frac{\alpha}{2}}\right)_+, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$$
since $x_e = x - \left(x - h^{\frac{\alpha}{2}}\right)_+$

we have $\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle = \langle P_t \left(x - h^{\frac{\alpha}{2}}\right)_+, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle + \langle P_t x_e \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$

and $x_{\rm e} \le h^{\frac{\alpha}{2}}$, hence we have,

$$\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \leq \langle P_t \left(x - h^{\frac{\alpha}{2}}\right)_+, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle + \langle P_t h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$$

using the property of contractivity of the semigroup on the right, we have

$$\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \leq \langle \left(x - h^{\frac{\alpha}{2}}\right)_+, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle + \langle h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$$

from the relation $x - h^{\frac{\alpha}{2}} = \left(x - h^{\frac{\alpha}{2}}\right)_{+} - \left(x - h^{\frac{\alpha}{2}}\right)_{-}$.

We have,

$$\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \leq \langle x - h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle + \langle h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$$

$$\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \leq \langle x - h^{\frac{\alpha}{2}} + h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$$

$$\langle P_t x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \leq \langle x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle$$

i.e

since P_t is a contraction and $x_e \le h^{\frac{\alpha}{2}}$,

then, for all $x \in D_h(G)$ we have, $\langle P_t x - x, \left(x - h^{\frac{\alpha}{2}}\right)_+ \rangle \le 0$

which implies that

$$\langle Gx, \left(x - h^{\frac{\alpha}{2}}\right)_{+} \rangle = \lim_{t \downarrow 0} \frac{1}{t} \langle P_{t}x - x, \left(x - h^{\frac{\alpha}{2}}\right)_{+} \rangle \le 0$$

$$\langle Gx, \left(x - h^{\frac{\alpha}{2}}\right)_{+} \rangle = \lim_{t \downarrow 0} \frac{1}{t} \langle (P_{t} - I)x, \left(x - h^{\frac{\alpha}{2}}\right)_{+} \rangle \le 0$$

 $(iii) \, \Rightarrow (i)$

Let $x \in L_2(\varphi)_h$ and $y = \lambda R_\lambda x$, if $x \le h^{\frac{\alpha}{2}}$, then

$$\lambda \langle y, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle = \langle \lambda y - Gy, \left(y + h^{\frac{\alpha}{2}}\right)_{+} \rangle + \langle Gy, \left(x - h^{\frac{\alpha}{2}}\right)_{+} \rangle \le \lambda \langle x, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle$$

since $\lim_{\lambda \to \infty} \lambda R_{\lambda} x = x$

$$\lambda \langle y, (y-h^{\frac{\alpha}{2}})_{+} \rangle \leq \lambda \langle h_{\varphi}^{\frac{(1-t)}{2}}, (y-h^{\frac{\alpha}{2}})_{+} \rangle$$

for this inequality to hold we must have that $y \le h_{\varphi}^{\frac{(1-t)}{2}}$

hence we have,

$$\lambda \langle y, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle - \lambda \langle h^{\frac{\alpha}{2}}, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle \leq 0$$
$$\lambda \langle \left(y - h^{\frac{\alpha}{2}}\right), \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle \leq 0$$
$$\lambda \langle y - h^{\frac{\alpha}{2}}, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle = \lambda \langle \left(y - h^{\frac{\alpha}{2}}\right)_{+}, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle - \lambda \langle \left(y - h^{\frac{\alpha}{2}}\right)_{-}, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle \leq 0$$
hence
$$\lambda \langle \left(y - h^{\frac{\alpha}{2}}\right)_{-}, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle = 0$$

thus we have,

$$\lambda \langle \left(y - h^{\frac{\alpha}{2}}\right)_{+}, \left(y - h^{\frac{\alpha}{2}}\right)_{+} \rangle \leq 0 \quad \text{this implies that} \quad \lambda \left\| \left(y - h^{\frac{\alpha}{2}}\right)_{+} \right\| \leq 0$$

since $\lambda > 0$, we have $\left\| \left(y - h^{\frac{\alpha}{2}}\right)_{+} \right\| \leq 0$, this implies that $0 \leq \lambda R_{\lambda} x \leq h^{\frac{\alpha}{2}}$
and if $x \geq 0$, then $-nx \leq h^{\frac{\alpha}{2}}$, which implies $-ny \leq h^{\frac{\alpha}{2}}$ for all $n \in \mathbb{N}$, hence $y \geq 0$

.

Theorem: 2

Let P be a symmetric $L_2(\mathcal{M})$ - Markov operator. Then the quadratic form

 $x \in L_2(\mathcal{M}) \mapsto \mathcal{E}x = \langle (I - P)x, x \rangle \in L_2(\mathcal{M})$ is a Dirichlet form.

Proof:

By assumption, *P* is a self adjoint, positivity- preserving contraction and \mathcal{E} is a non negative, real quadratic form on $L_2(\mathcal{M})$. We have for $x \in L_2(\mathcal{M})$ and *P* self adjoint,

$$\langle Px, x \rangle = \langle P(x_{+} - x_{-}), (x_{+} - x_{-}) \rangle$$

$$= \langle Px_{+}, (x_{+} - x_{-}), \rangle - \langle Px_{-}, (x_{+} - x_{-}) \rangle$$

$$= \langle Px_{+}, x_{+} \rangle - \langle Px_{+}, x_{-} \rangle - \langle Px_{-}, x_{+} \rangle + \langle Px_{-}, x_{-} \rangle$$

$$= \langle Px_{+}, x_{+} \rangle + \langle Px_{-}, x_{-} \rangle - 2 \langle Px_{-}, x_{+} \rangle$$

therefore

$$\langle (I-P)x, x \rangle = \langle (I-P)x_+, x_+ \rangle + \langle (I-P)x_-, x_- \rangle - 2\langle (I-P)x_-, x_+ \rangle$$
$$\varepsilon x = \langle (I-P)x, x \rangle = \varepsilon x_+ + \varepsilon x_- - 2\langle (I-P)x_-, x_+ \rangle$$
$$\varepsilon x - \varepsilon x_+ = \varepsilon x_- - 2\langle (I-P)x_-, x_+ \rangle \ge 0$$

now we have,

$$\begin{aligned} & \mathcal{E}x - \mathcal{E}x_{+} = \mathcal{E}x_{-} - 2\langle (I - P)(x_{+} - x), x_{+} \rangle \\ & \mathcal{E}x - \mathcal{E}x_{+} = \mathcal{E}x_{-} - 2\langle (I - P)x_{+}, x_{+} \rangle + 2\langle (I - P)x, x_{+} \rangle \\ & \mathcal{E}x = \mathcal{E}x_{+} + \mathcal{E}x_{-} - 2\langle (I - P)x_{+}, x_{+} \rangle + 2\langle (I - P)x, x_{+} \rangle \end{aligned}$$

now since $x = x_e + \left(x - h^{\frac{\alpha}{2}}\right)_+$, $\mathcal{E}|x| = \mathcal{E}x_+ + \mathcal{E}x_-$ hence,

$$\begin{split} & \varepsilon x_{e} = \varepsilon |x| - \varepsilon \left(x - h^{\frac{\alpha}{2}} \right)_{+} - 2 \left((I - P) \left(x - h^{\frac{\alpha}{2}} \right)_{+}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right) \\ & + 2 \left((I - P) \left(x - h^{\frac{\alpha}{2}} \right)_{+} - \left(x - h^{\frac{\alpha}{2}} \right)_{-} + h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right) \\ & \varepsilon x_{e} = \varepsilon |x| - \varepsilon \left(x - h^{\frac{\alpha}{2}} \right)_{+} - 2 \left((I - P) \left(x - h^{\frac{\alpha}{2}} \right)_{-} + h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right) \\ & \varepsilon x_{e} = \varepsilon |x| - \varepsilon \left(x - h^{\frac{\alpha}{2}} \right)_{+} - 2 \left((P - I) \left(\left(x - h^{\frac{\alpha}{2}} \right)_{-} - h^{\frac{\alpha}{2}} \right), \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right) \\ & \varepsilon x_{e} = \varepsilon |x| - \varepsilon \left(x - h^{\frac{\alpha}{2}} \right)_{+} - 2 \left(P \left(x - h^{\frac{\alpha}{2}} \right)_{-} , \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right) - 2 \left((I - P) h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right) \end{split}$$

since $\mathcal{E}|x| \le \mathcal{E}x$ we have,

$$\varepsilon x_{\rm e} \leq \varepsilon x - \varepsilon \left(x - h^{\frac{\alpha}{2}} \right)_{+} - 2 \left\langle P \left(x - h^{\frac{\alpha}{2}} \right)_{-}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right\rangle - 2 \left\langle (I - P) h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right\rangle.$$

Since *P* is an $L_2(\mathcal{M})$ - Markov operator from definition we have $Ph^{\frac{\alpha}{2}} \le h^{\frac{\alpha}{2}}$ for all $h^{\frac{\alpha}{2}} \in L_2(\mathcal{M})$. Thus $(I - P)h^{\frac{\alpha}{2}} \ge 0$ hence the last term $\langle (I - P)h^{\frac{\alpha}{2}}, (x - h^{\frac{\alpha}{2}})_+ \rangle \ge 0$ likewise the

other terms are non-negative since they are inner product of non-negative operators.

Hence we have

$$\varepsilon x_{e} + \varepsilon \left(x - h^{\frac{\alpha}{2}} \right)_{+} + 2 \left\langle P \left(x - h^{\frac{\alpha}{2}} \right)_{-}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right\rangle + 2 \left\langle (I - P) h^{\frac{\alpha}{2}}, \left(x - h^{\frac{\alpha}{2}} \right)_{+} \right\rangle \le \varepsilon x$$

this implies that $\mathcal{E}x_e \leq \mathcal{E}x$ for $x \in D_h(\mathcal{E})$.

Hence the quadratic form $\mathcal{E}(x) = \langle (I - P)x, x \rangle$ is Dirichlet.

Conclusion: Symmetric Markov semigroups and the Dirichlet forms on noncommutative spaces plays an important role in noncommutative potential theory, for example the Dirichlet energy integral $\mathcal{E}[u]$ can be use to describe potential at the vertexes of a electrical circuit [11]. The Dirichlet forms from the dynamical point of view is also fundamental, since a Dirichlet form \mathcal{E} acting on a locally compact topological Hausdorff space gives rise to a family of Markov-Hunt stochastic processes.

REFERENCES:

- [1]. Goldstein, S. and Lindsay, J.M., (1995). *KMS-Symmetric markov semigroups*, Mathematische Zeitschrift, 219,591-608.
- [2]. Alberverio, S and Hoegh-krohn, (1977). *Dirichlet forms and Markovian Semigroup on C*-algebras*, Communications in Mathematical Physics, **56**, **173-187**.
- [3]. Davies, E.B. and Lindsay, J.M., (1992). *Non commutative symmetric markov semigroups*, Mathematische Zeitschrift, 210,379-411.
- [4]. Trunov, N. V., (1979). On a non-Commutative analogue of the L_P Space. Izvestiya Vuz, Soviet Mathematics, **23**, **69-77**.
- [5]. Bratteli, O. and Robinson, D.W., (1979). *Operator Algebra and Quantum statistical Mechanics*, Springer-verlag New York-Heidelberg-Berlin Vol. 1.

[6]. Takesaki, M., (1979). Theory of operator algebras 1, Springer-Verlag Berlin.

- [7]. Sunders, V. S., (1987). An Invitation to von Neumann algebras, Springer-Verlag, Berlin.
- [8]. Segal, I.E., (1953). A noncommutative Extension of Abstract Integration, Annals of Maths, **57**, **401-457**.
- [9]. Kadison, V.R., and Ringrose, J.R. (1983). Fundamentals of The Theory of Operator Algebras, Vol. 1 and II, Academic Press, New York.
- [10]. Cipriani, F., Fagnola, F. and Lindsay, J.M., (2000). Spectral Analysis and Feller property for quantum Ornstein-Uhlenbeck Semigroups, Communications in mathematical Physics, 210, 85-105.
- [11]. Cipriani, F *Dirichlet forms On Noncommutative Spaces*, Lectures Notes on Quantum Potential Theory