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ABSTRACT

Using symmetric embeddings of the von Neumann algebra M into Trunov non-commutative
L,—spaces, we study symmetric quantum Markovian semigroups. We obtained a characterization

of the generator as a Dirichlet form for such symmetric Markovian semigroups.
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1. Introduction:

Inspired by the work of Goldstein and Lindsay [1] on K.M.S-symmetric semigroups on von
Neumann algebras, we study symmetric Markov semigroups within the context of Trunov’s
L,- spaces defined over a von Neumann algebra M. The construction of a tracially
symmetric markov semigroups in the setting of a semi-finite von Neumann algebra M
admitting a faithful normal semi-finite trace T on M was initiated by Albeverio and Hgegh-
Krohn [2] in the seventies and developed by Davies and Lindsay [3] in the nineties. Their
construction and analysis took place on the Segal L,,(7) spaces which together with each of
the interpolating spaces L,(t) (0 <p < =), is a subspace of a topological *-algebra M
of 7- measurable operators acting as closed densely defined operators on L, (7). Goldstein
and Lindsay [1] extends it to the context of state ¢ on von Neumann algebras in the nineties,
by the use of symmetric embedding of the von Neumann algebra into the Haagerup spaces
L,- spaces. In this paper we study symmetric markov semigroups using the embedding

defined by them, on the algebra M into the Trunov’s space L, (M) [4].



2. PRELIMINARIES:

A von Neumann algebra is a *-subalgebra M of B($) which is self-adjoint, contains the
identity operator I and is closed in the weak operator topology. The weak operator topology
is induced by the family of ~semi norms {p;, } defined on M by pg,(x) = X|{x¢ n)|,
with x € M, &, € §. M, denote the positive elements of M, i.e M, = {x € M:x > 0}.
A linear positive functional ¢ on M s called a state if ¢(1) = 1. The space of all o-
weakly continuous linear functionals on a von Neumann algebra M is called the predual
M ., we denote by M, . the positive part of M,. More details on von Neumann algebras

will be found in [5,6,7]

We recall the Trunov construction of the L,,- spaces as follows; Let M be semi-finite von
Neumann algebra, with a faithful normal state ¢, there exist a unique operator p € LT (M)

called the Radon-Nikodym derivative of the state with respect to the trace 7 such that

o(x) = t(x.p) = (p.x), [8]
This representation enables one to define for each number 1 < p < oo a certain norm on M
that is connected with . For any x € M, the operator p/2Pxp?/?P € L, (M), and therefore

the following definition make sense,

p
llxll, = (T|P1/2p.x.p1/2P| )1/p



This defines a norm on M for each, 1 <p <o, and we write ||x|l, = |lx|| , for
x € M. This norm [[x]|,, does not depend on the choice of the faithful normal semi-finite trace
T and is a norm on M [6].

Let L,(M) ={x € M :|lx|l, < o} be the completion of M with respect to this norm,

this completion we called the Trunov L,, —spaces,with M = L, (M) in the usual norm ||. || .

As for the density matrix, using functional calculus, we introduce the operator h* for ¢ € R, as
follows: Let h be a positive non-singular self-adjoint operator with spectrum sp(h). We
denote by C(sp(h)) the von Neumann algebra of continuous real valued functions on sp(h).

Let f, € C(sp(h)) be defined by

fu(s) = s%, s € sp(h). [9]

Then h“ is define as f,(h) for real values of a. Hence we have f,(h) = h*. Now for a von
Neumann algebra M with a faithful normal trace 7. We assume that h“* satisfies the

following three conditions;

(i) 7(h?) < oo,

(i) t(h®) =1,

(i) x)=t(x.h%) =1 (h%.x. hg) , Where is a faithful normal state ¢ on M.



With the preceding conditions, h“ is a trace class operator called the density matrix or the

Radon-Nikodym derivative of the trace 7 with respect to the state ¢ , that is , :—; = h%*, hence

h* € L;(M), - the set of trace class operators.
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Now for 1<p<qg<oo, let p=-— and q=%,with0<t<1 then

= 1. Since
1-t

< |-
Q|-

h® € L,(M), ,we have h: e L, (M), and hence h(~9% € L,(M).

We now have the following definitions of technical terms :

Definition 1: symmetric embeddings of

(i) M into M. , by i ) =t(hz.x.h2), X € M.

(1-Ha (1-Ha

(i)  Minto L,(M), by ip(x)=<h = k2 ) X € M.

(i) L) inoL,0), by k() =(h7.£.h7) feL,@0).
Where L, (M), is the Trunov’s Lp — space.

Definition 2: A linear operator T: M — M is called Markov if 0 < x < 1 implies that

0<Tx<1

Definition 3: An operator T on L, is called L,-Markov if 0 < f < h(=9% implies that

0<Tf< h(D% felL,

Definition 4: A linear operator T:M — M iscalled Symmetric or tracially Symmetric, if
T(hg.Tx.h% y)zr(xh%.Ty.h%), X,y EM.

Definition 5: A Markov semigroup P, on M is a weak* -continuous semigroup consisting of

Markov operators.



Definition 6: An Lp —Markov semigroup (P:):so, IS @ strongly continuous contraction
semigroup consisting of Lp markov operators.
Definition 7: A Markov Semigroup (P;):s, iscalled Symmetric Markov Semigroup, if
T (h%.Ptx. h% y) =T (x h%. P.y. h%) for x,yeM.

Definition 8:  An Lp — Markov resolvent family (R;) ;s IS a strongly continuous contraction
resolvent such that each AR, is Lp — Markov.
Definition 9: By a strongly continuous contraction resolvent we mean a family (R;);so Of
(everywhere defined) linear operators on $) satisfying the following conditions,

() limy_eoARyx =x for x€9H

(i) AR, isacontractionon$ forallA >0

(i) R, — R, = (u—DR3R,, for all A,u>0.
Definition 10: A closed densely defined operator G on L,(M) is called Dirichlet if G is real

that is the domain of G is * -invariant and Gx*=Gx for xe€D(G) and

(Gx, (x — h%) ) <0 forall D,(G). Where D(G)is the domain of G and D, (G) is the domain
+

of the self adjoint part of G.
Definition 11:  With any x € L,(M),, the self adjoint part of L,(M), we associate an

element x. defined in [10] by the formula,
Xe =x—(x—h?)+ =hz—(x- hz)

we have that x, <x ,x.<hz and hz € L,(M).



Definition 12: A non negative quadratic form € defined on a dense subspace D (€) of a Hilbert
space $ is closed if the domain D(€) equipped with the norm ||.||¢ given by [[x||2 = |lx||? +
€(x) is a Hilbert space. It is closable if there exists a closed form € extending € , that
is, D(€) D D(E) and € (x) =€(x) for x € D(E). There exists in such a case a closed form
€, called the closure of € which is the smallest closed extension of €.
Definition 13: A nonnegative quadratic form € on L,(M) with dense domain D(€) is called
Dirichlet if,

Q) € is real thatis D(E) is * -invariant and €x* = Ex for x € D(E).

(i) Xy Xe €Dp(E) for x € Dy(E),

(iii) Ex, <& and &x, <& forx € Dy(€).

where D, (€) is the self-adjoint part of D(E).

3. RESULTS:

The main result in this section is theorem 2, which state, that the form generator of a symmetric
Markov semigroup is a Dirichlet form. The converse of the theorem was obtained for tracially
symmetric Markov semigroups acting on Segal L,-spaces by Albeverio and Hgegh-Krohn [2].
We are now ready to embark on the proof of results ;

Theorem: 1

Let (R;)1>0 be a strongly continuous contraction resolvent on L,(M) and G the generator of
the semigroup (P;):so -Then the following conditions are equivalent

(i) each AR, is L, —Markov

(i) each P; is L, —Markov



(i) G is Dirichlet

Proof:

@) = (iD)

This follows from the relation P, = s.t limnﬁm(n/tRn/t)"
(i) = (iii)

Since P; an L, —Markov contraction, then for x € L,(¢p),

we have x=(x—h§)+ +x—(x—h§)

+

xe=x—(x—hz) =hi—(x—h2)

+ _
and also, ((x — h%)Jr, (x — h%)_) =0.
Hence,

(Ptx,(x—h%) y = (Pt<x—h%) ,(x—h%)) + (Ptx—<x—h%> ,(x—h%>)

+

a
since X, =x — (x — hE)
+

wehave (P, (x - h§)+ )= (P (x - h§)+, (x- h§)+> +(Puxe (x—hz) )

+

and x, < h%, hence we have,
(P, (x — h5)+ )< (P (x— h5)+ (x - h5)+) + (P2, (x - hi)+ )
using the property of contractivity of the semigroup on the right, we have

=), 02 (=), (=), 0 (o)



from the relation x — h% = (x - hg)+ — (x - h%)_.

We have,
(P, (x - h%)+ ) <(x—ht,(x- h%)+) (e, (x - h%)+ )
(P, (x - hg)+ ) <Co—he+he,(x - h5)+>
ie (P, (x=h2) Y= (x—h2) )

since P, isacontraction and x. < hz,

then, for all x € D,(G) we have, (P.x —x, (x - hi) )<0
+

which implies that

(Gx, (x - hg)+ Y = limtw% (Pix — x, (x - hg)+ Y<0

a . 1 a
(Gx, (x — h2)+ ) = llmtw? (P, — Dx, (x - h2)+ Y<0
(iit) = (i)
Let x€L,(p), and y= AR;x, if x< h%,then

2. (v - h%')+> = Gy =Gy, (y+ h%)+> + 46y, (x - h%)+> < 20y~ h%> )

+
since limy o AR; x = x

(a-t)

My (y—he) ) < Ak, L (y-h2) )

-1
for this inequality to hold we must have that y < h¢2




hence we have,
Ay (y—he) Y= Akt (y—h2) ) < 0
M(y-h) . (y-h:) ) <0
uy—h%,(y—h%)+>=A<(y—h%)+,(y—h%)+> ~A((y-h?) ,(y—h%)+> <0
nence A((y — ki) (y=ht) )= 0
thus we have,

Ay - h%)+,(y - h%)+> < 0 thisimplies that 2 H(y - h%)+ H <0
since 2> 0, we have ||(y - hg)+ ” <0, thisimpliesthat 0 < AR;x < hz

and if x > 0,then —nx < hz, which implies —ny < h% forall n€N, hence y=>0.

Theorem: 2
Let P be a symmetric L,(M)- Markov operator. Then the quadratic form
xX€ L,(M)— &x =(U—P)x,x) € L,(M) is a Dirichlet form.
Proof:
By assumption, P is a self adjoint, positivity- preserving contraction and € is a non negative, real
quadratic formon L,(M) . We have for x € L,(M) and P self adjoint,
(Px,x) = (P(xy — x_), (x4 — x_))
= (Pxy, Oy —x2),) — (Px_, (x4 —x_))
= (Px,,xy)—(Pxy,x_) —(Px_,x.)+(Px_,x_)

= (Px,,xy)+ (Px_,x_) — 2(Px_,x,)
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therefore
(U =P)x,x) = (U = P)xy,x;) + (I = P)x_,x_) = 2(( — P)x_, x4)
Ex =(U—-P)x,x) =Ex; +&x_ —2((I — P)x_,x,)
€x — Ex, = Ex_ — 2((I = P)x_,x, ) =0 .
now we have,
Ex—Exy = Ex_ —2((I — P)(x; — x), x4 )
€x — €x, = Ex_ — 2(( — P)xy, x, )+ 2(( = P)x, x,.)

Ex =Ex,  +Ex_ —2(I—P)xy, x, )+ 2(I—P)x, x,)

now since x = x.+ (x — hg)Jr , Elx| = &x, + Ex_ hence,
Sxe=8|x|—€<x—hg) —2((1—P)<x—hg) ,(x—h%> )
+ + +

—(x= h?) +h2, (x-h2) )

+ +

+2(U - P)(x - h?)
v, = €lxl — € (x- h%)+ ~2(U-P)(x— hZ) +h?, (- h%>+ )
ex, =l —€(x - h%)+ ~2(p -1 ((x- h%)_ - h%>, (x- h%)+ )
ex, =l —€(x - h%)+ ~24p(x- h%)_ (x- h%)+ ) —2(( — P)hZ, (x- h%>+)
since  €lx| < Ex we have,
ex, < v —g(x- h%)+ ~2¢p(x- h%)_ (- h%>+ ) —2((I - P)RZ, (x- h%>+).
Since P is an L,(M)- Markov operator from definition we have PhZ < h?  for all

h% € L,(M). Thus (I — P)hg >0 hencethelast term ((I — P)h%, (x - hg) y=>0 likewise the
+

other terms are non-negative since they are inner product of non-negative operators.
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Hence we have

€x. + € (x - h7)+ +2(P (x — h7>_, (x — h7>+ Y+ 2((I — P)h?, (x - h7)+) < &x
this implies that €x, < €x for x € D,(€).

Hence the quadratic form &€(x) = ((I — P)x,x) is Dirichlet.
Conclusion: Symmetric Markov semigroups and the Dirichlet forms on noncommutative spaces
plays an important role in noncommutative potential theory, for example the Dirichlet energy
integral £[u] can be use to describe potential at the vertexes of a electrical circuit [11]. The
Dirichlet forms from the dynamical point of view is also fundamental, since a Dirichlet form &

acting on a locally compact topological Hausdorff space gives rise to a family of Markov-Hunt

stochastic processes.
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