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ABSTRACT 

Using symmetric embeddings of the von Neumann algebra   into Trunov non-commutative  

  –spaces, we study symmetric quantum Markovian semigroups. We obtained a characterization 

of the generator as a Dirichlet form for  such symmetric Markovian semigroups.   
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1. Introduction: 

Inspired by the work of Goldstein and Lindsay [1] on K.M.S-symmetric semigroups on von 

Neumann algebras, we study symmetric Markov semigroups within the context of Trunov’s  

  - spaces defined over a von Neumann algebra  . The construction of a tracially 

symmetric markov semigroups in the setting of a semi-finite von Neumann algebra    

admitting a faithful normal semi-finite trace   on   was initiated by Albeverio and Høegh-

Krohn [2] in the seventies and developed by Davies and Lindsay [3] in the nineties. Their 

construction and analysis took place on the Segal   ( )         which together with each of 

the interpolating spaces   ( )  (      )     is a subspace of a topological *-algebra    

of  - measurable operators acting as closed densely defined operators on    ( ). Goldstein 

and Lindsay [1] extends it to the context of state    on von Neumann algebras in the nineties,  

by the  use of  symmetric embedding of the  von Neumann algebra into the Haagerup spaces 

  - spaces.  In this paper we study symmetric markov semigroups using the  embedding 

defined by them, on the algebra     into the Trunov’s space    ( ) [4].   
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2. PRELIMINARIES:  

A von Neumann algebra is a *-subalgebra   of  ( ) which is self-adjoint, contains the 

identity operator I and is closed in the weak operator topology. The   weak operator topology 

is induced by the family of   semi norms {    } defined on    by      ( )  ∑|〈     〉|, 

with           .     denote the positive elements  of  , i.e     *       +. 

A linear positive   functional    on     is called a state if   ( )     The space of all  - 

weakly continuous linear functionals on a  von Neumann algebra    is called the predual 

    , we denote  by        the positive part of    . More details on von Neumann algebras 

will be found in  [5,6,7]   

We recall the Trunov construction of the    - spaces as follows; Let    be semi-finite von 

Neumann algebra, with  a faithful normal state  , there exist a unique operator     
 ( ) 

called the Radon-Nikodym derivative of the state with respect to the trace   such that       

                                                         ( )   (   )   (   )                                     [8]                                                       

 This representation   enables one to define for each number         a certain norm on   

  that is connected with  .  For any     ,  the operator     ⁄      ⁄    ( )   and therefore   

the following definition  make sense, 

                                                          ‖ ‖  ( | 
   ⁄        ⁄ |

 
)  ⁄    
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  This defines a norm  on      for  each,         and we  write    ‖ ‖  ‖ ‖ ,  for   

   . This norm  ‖ ‖    does not depend on the choice of the faithful normal semi-finite trace 

  and is a norm on   [6].    

Let         ( )  {     ‖ ‖   }   be the completion of    with respect to this norm, 

this completion we called the Trunov    spaces,with      ( ) in the usual norm  ‖ ‖  . 

 

As for the density matrix, using functional calculus, we introduce the operator    for      as 

follows:  Let     be a positive non-singular self-adjoint operator with spectrum    ( )  We 

denote by    (  ( ))  the von Neumann algebra of  continuous real valued functions on   ( )     

Let        (  ( ))  be defined   by 

                                               ( )   
                  ( ) .                                           [9]   

Then       is define as     ( ) for real values of      Hence we have    ( )   
  . Now for a von 

Neumann algebra   with a faithful normal trace      We  assume that     satisfies   the 

following three conditions; 

(i)   (  )   ,   

(ii)  (  )   ,   

(iii)  ( )   (    )   . 
 

     
 

 / , where  is a faithful normal state    on     
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 With the preceding conditions,    is a trace class operator called the density matrix or  the 

Radon-Nikodym derivative of the trace    with respect to the state    , that is ,   
  

  
     ,  hence  

     ( )    -  the set of trace class operators.   

 Now  for          ,  let    
 

   
    and    

 

 
 , with        then   

 

 
 
 

 
     Since   

     ( )   , we have    
 

      ( )   and hence    (   )     ( ).  

We now have the following definitions of technical terms :  

Definition 1: symmetric embeddings of 

(i)      into    ,  by                    ( )   . 
 

     
 

  /                     

(ii)      into    ( ),  by             ( )  ( 
(   ) 

      
(   ) 

  )                

(iii)       ( )  into   ( ),  by       ( )  . 
  

     
  

  /         ( )  

Where      ( ), is the Trunov’s     space.  

Definition 2:   A linear operator       is called Markov if       implies that 

       . 

Definition 3:  An operator T on    is called    -Markov  if       (   )  implies that          

       (   )             

Definition 4:    A linear operator            is called   Symmetric or tracially Symmetric,  if   

                                            . 
 

        
 

    /   .   
 

        
 

 /                 . 

Definition 5:   A Markov semigroup      on   is a weak* -continuous semigroup consisting of 

Markov operators. 
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 Definition 6:  An    Markov semigroup  (  )   , is a strongly continuous contraction 

semigroup   consisting of     markov operators. 

Definition 7:     A Markov Semigroup (  )      is called   Symmetric Markov Semigroup, if  

                                 . 
 

       
 

    /   .    
 

       
 

 /        for          .  

 Definition 8:    An      Markov resolvent family (  )    is a strongly continuous contraction 

resolvent   such that each      is       Markov. 

Definition 9:   By a strongly continuous contraction resolvent we mean a family (  )     of  

(everywhere defined) linear operators on   satisfying the following conditions, 

(i)                              

(ii)       is a contraction on    for all     

(iii)        (   )                    for  all        . 

Definition 10:   A closed densely defined operator         ( )  is called Dirichlet if   is  real 

,that is the domain of   is * -invariant and          for     ( )  and                                

〈   .   
 

 /
 
〉        for all    ( )  Where  ( )is the domain of    and   ( ) is the domain 

of the self adjoint part of    

Definition 11:    With any      ( )  , the self adjoint part of   ( )   we associate an 

element      defined in [10]   by the formula,   

                                                   .   
 

 /
 
  

 

  .    
 

 /
 

                                     

   we have that             ,     
 

    and          
 

    ( ). 
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Definition 12:   A non negative quadratic form    defined on a dense subspace  ( ) of a Hilbert 

space   is closed if the domain  ( )  equipped with the norm  ‖ ‖  given by  ‖ ‖ 
   ‖ ‖  

 ( )   is a Hilbert space. It is closable if there exists a closed form   ̂ extending    , that 

is,  (  ̂)    ( )   and    ̂( )   ( )   for     ( )    There exists in such a case a closed form 

 ̅, called the closure of   ,which is the smallest closed extension of  . 

 Definition 13:  A nonnegative quadratic form    on     ( ) with dense domain  ( )  is called 

Dirichlet if, 

(i)    is   real ,that is  ( ) is * -invariant and          for    ( ). 

(ii)             ( )     for       ( )   

(iii)           and                       ( ) .  

where    ( ) is the self-adjoint part of   ( ). 

 

3.  RESULTS: 

The main result in this section is theorem 2, which state, that the form generator of a symmetric 

Markov semigroup is a Dirichlet form.  The converse of the theorem was obtained for tracially 

symmetric Markov semigroups acting on Segal   -spaces by  Albeverio and Høegh-Krohn [2].  

We are now ready to embark on the proof of   results ; 

Theorem:  1 

Let  (  )    be a strongly continuous contraction resolvent on    ( ) and   the generator of 

the semigroup (  )    .Then  the following conditions are equivalent 

(i)   each         is     –Markov 

(ii)   each        is     –Markov 
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 (iii)       is   Dirichlet 

 

Proof: 

 ( )   (  ) 

This follows from the relation               (     ⁄ )⁄  
 

 (  )   (   ) 

 Since       an    –Markov contraction, then   for      ( )    

we have               .   
 

 /
 
    .   

 

 /
 

 

                             .   
 

 /
 
  

 

  .   
 

 /
 

                                  

 and also,            〈.   
 

 /
 
 .   

 

 /
 
〉                                                                                   

 Hence,  

 〈    (   
 
 )
 
  〉        〈  (   

 
 )
 
 (   

 
 )
 

〉          〈     (   
 
 )
 
  (   

 
 )
 

〉                                             

since        .   
 

 /
 

     

we have           〈    .   
 

 /
 
  〉   〈  .   

 

 /
 
 .   

 

 /
 
〉  〈     .   

 

 /
 
 〉      

and        
 

      hence we have, 

                       〈    .   
 

 /
 
  〉  〈  .   

 

 /
 
 .   

 

 /
 
〉  〈   

 

   .   
 

 /
 
 〉    

using the property of contractivity of the semigroup on the right, we have 

                       〈    .   
 

 /
 
  〉  〈.   

 

 /
 
 .   

 

 /
 
〉  〈 

 

   .   
 

 /
 
 〉    
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 from  the relation       
 

  .   
 

 /
 
 .   

 

 /
 
   

 

 

We have,  

                         〈    .   
 

 /
 
  〉    〈   

 

   .   
 

 /
 
〉   〈 

 

   .   
 

 /
 
 〉       

                           〈    .   
 

 /
 
  〉    〈   

 

   
 

   .   
 

 /
 
〉      

i.e                    〈    .   
 

 /
 
  〉  〈  .   

 

 /
 
〉                                               

 since     is a contraction   and        
 

    

 then, for all      ( )  we have,   〈      .   
 

 /
 
 〉                                                                                  

which implies that 

                        〈   .   
 

 /
 
  〉        

 

 
  〈      .   

 

 /
 
 〉    

                          〈   .   
 

 /
 
 〉        

 

 
  〈(    )  .   

 

 /
 
 〉                           

(   )   ( ) 

 Let        ( )     and           ,    if       
 

  , then  

                              〈   (   
 
 )
 

〉  〈       (   
 
 )
 

〉  〈   (   
 
 )
 

〉     〈   (   
 
 )
 

〉                                                 

since                   

                         〈   .   
 

 /
 
〉      〈  

(   )

   .   
 

 /
 
〉      

for  this inequality to hold  we  must have  that        

(   )

   



10 

 

hence we have,  

                                〈   .   
 

 /
 
〉   〈 

 

   .   
 

 /
 
〉        

                                             〈.   
 

 /  .   
 

 /
 
〉        

 〈   
 
   (   

 
 )
 

〉   〈(   
 
 )
 
 (   

 
 )
 

〉    〈(   
 
 )
 
  (   

 
 )
 

〉        

hence      〈(   
 
 )
 
  (   

 
 )
 

〉    

thus we have, 

 〈(   
 
 )
 
 (   

 
 )
 

〉          this implies that      ‖(   
 
 )
 
 ‖      

since         we have   ‖.   
 

 /
 
 ‖   ,    this implies that               

 

  

and if        then      
 

   which implies       
 

  for all         hence               

 

Theorem: 2  

Let    be a symmetric   ( )- Markov operator. Then the quadratic form   

       ( )      〈(   )   〉      ( )       is a Dirichlet form. 

Proof:  

By assumption, P is a self adjoint, positivity- preserving contraction and   is a non negative, real 

quadratic form on    ( ) . We have for       ( )  and   self adjoint, 

〈    〉  〈 (     ) (     )〉  

             〈     (     ) 〉  〈     (     )〉 

             〈       〉  〈       〉  〈       〉  〈       〉 

             〈       〉  〈       〉   〈       〉                                                     
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therefore 

〈(   )   〉  〈(   )      〉  〈(   )      〉   〈(   )      〉 

   〈(   )   〉            〈(   )      〉 

             〈(   )      〉     .                                                       

now we have, 

                 〈(   )(    )    〉 

                 〈(   )      〉   〈(   )     〉  

              〈(   )      〉   〈(   )     〉    

now since           .   
 

 /
 

   ,    | |             hence,  

         | |   (   
 
 )
 
  〈(   ) (   

 
 )
 
 (   

 
 )
 
 〉 

                  〈(   ) (   
 
 )
 
 (    

 
 )
 
  

 
   (   

 
 )
 
 〉    

         | |   (   
 
 )
 

    〈(   ) (    
 
 )
 
  

 
  (   

 
 )
 
 〉    

         | |   (   
 
 )
 

    〈(   ) ((    
 
 )
 
   

 
 )  (   

 
 )
 
 〉    

         | |   (   
 
 )
 
  〈 (    

 
 )
 
 (    

 
 )
 
 〉    〈(   ) 

 
   (   

 
 )
 

〉    

since         | |          we  have,  

            (   
 
 )
 
  〈 (    

 
 )
 
 (    

 
 )
 
 〉   〈(   ) 

 
  (   

 
 )
 

〉     

Since    is  an    ( )- Markov operator from definition  we have      
 

   
 

       for all 

   
 

     ( )   Thus (   ) 
 

      hence the last   term    〈(   ) 
 

  .   
 

 /
 
〉      likewise the 

other terms are non-negative since they are inner product of non-negative operators. 
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Hence we have 

         (   
 
 )
 
  〈 (    

 
 )
 
 (    

 
 )
 
 〉   〈(   ) 

 
  (   

 
 )
 

〉     

this implies that             for       ( )   

 Hence   the quadratic form    ( )  〈(   )   〉  is   Dirichlet. 

Conclusion:  Symmetric Markov semigroups and the Dirichlet forms on noncommutative spaces 

plays an important role in noncommutative potential theory, for example  the Dirichlet energy 

integral  , -  can be use to describe  potential at the vertexes of a electrical circuit [11]. The  

Dirichlet forms from the dynamical point of view is also fundamental, since a Dirichlet form    

acting on a locally compact topological Hausdorff space gives rise to a family of Markov-Hunt 

stochastic processes. 

 

REFERENCES: 

[1].   Goldstein, S. and Lindsay, J.M., (1995). KMS-Symmetric markov semigroups, 

Mathematische Zeitschrift, 219,591-608. 

 

 

[2]. Alberverio,S and Hoegh-krohn,(1977). Dirichlet forms and Markovian Semigroup on C*- 

algebras , Communications in Mathematical Physics, 56,  173-187. 

 

[3]. Davies, E.B. and Lindsay, J.M., (1992). Non commutative symmetric markov semigroups, 

Mathematische Zeitschrift, 210,379-411. 

 

[4]. Trunov, N. V.,  (1979).  On a  non-Commutative analogue of the LP Space.  

Izvestiya Vuz, Soviet Mathematics, 23, 69-77. 

 

 

[5].    Bratteli, O. and Robinson, D.W., (1979).  Operator Algebra and Quantum statistical 

Mechanics, Springer-verlag New York-Heidelberg-Berlin Vol. 1.  

 



13 

 

[6]. Takesaki, M.,  (1979).  Theory of operator algebras 1, Springer-Verlag Berlin.   

 

[7]. Sunders, V. S., (1987). An Invitation to von Neumann algebras, Springer-Verlag, Berlin.   

 

[8].   Segal, I.E., (1953). A noncommutative Extension of Abstract Integration, Annals of 

Maths, 57, 401-457.  

 

[9].  Kadison, V.R., and Ringrose, J.R. (1983). Fundamentals of The Theory of Operator 

Algebras, Vol. 1 and II, Academic Press, New York.  

 

[10]. Cipriani, F., Fagnola, F. and Lindsay, J.M., (2000).  Spectral Analysis and Feller 

property for quantum Ornstein-Uhlenbeck Semigroups, Communications in mathematical 

Physics, 210,  85-105. 

 

[11]. Cipriani, F Dirichlet forms On Noncommutative Spaces, Lectures Notes on            

                      Quantum Potential Theory 

 

 

 

 

   

 

    

 

 

    

    

 

     

 

           

      

 

 



14 

 

 


