
1 
 

Quantum phase transition in the Heisenberg model: A case study of two-spin system. 

S. Ehika1 and J.O.A. Idiodi2 

1Department of physics, Ambrose Alli University Ekpoma, Edo State, Nigeria 

2Department of Physics, University of Benin, Benin City, Nigeria 

 

ABSTRACT 

This study presents a detailed and quantitative study of the magnetic properties of 

Heisenberg two-spin system. At the critical longitudinal magnetic fields of hzc=J and 

transverse field of hxc=J, the system undergoes a quantum phase transition (QPT) to the 

ferromagnetic state. It is found that the combined effect of longitudinal and transverse fields 

(mixed fields) hastens up the quantum transition from antiferromagnetism to ferromagnetism. 

For this mixed fields, a critical field of hxzc=0.7071J is observed. The experimental evidence 

of this QPT has been observed at optimum doping in the cuprate Bi2Sr2-xLaxCuO6+  

(Balakirev et al 2003). 

 The quantum magnetization observed at zero temperature for the Heisenberg spin-two 

systems was completely wiped out at finite temperatures due to thermal fluctuation. A 

temperature increase is expected to disrupt the ferromagnetic alignment of spins thereby 

favouring antiferromagnetism.  

 

I. INTRODUCTION 

Mechanical systems composed of many interacting parts are known to undergo Phase 

transition when an external parameter such as temperature, pressure or magnetic field is 

smoothly varied. In physics, a quantum phase transition (QPT) is a phase transition between 

different quantum phases of matter at absolute zero temperature. Contrary to classical phase 

transitions, quantum phase transitions can only be accessed by varying a physical parameter 

such as magnetic field or pressure at absolute zero temperature (Ando, 2004). The transition 

http://en.wikipedia.org/wiki/Quantum_phases
http://en.wikipedia.org/wiki/Magnetic_field
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describes an abrupt change in the ground state of a many-body system due to its quantum 

fluctuations. At the critical point where the quantum phase transition (QPT) occurs, the 

ground state of the system undergoes a qualitative change in some of its properties (Sachdev, 

1999). Osterloh et al (2002), showed that in a class of one-dimensional magnetic systems, the 

QPT is associated with a change of entanglement, and that the entanglement shows scaling 

behaviour in the vicinity of the transition point. This behaviour was discussed in detail for the 

Heisenberg model (Osborne and Nielsen, 2002; Giamarchi, 2004).   

On the other hand, classical phase transitions are driven by a competition between the 

energy of a system and the entropy of its thermal fluctuations. A classical system does not 

have entropy at zero temperature and therefore no phase transition can occur. Their order is 

determined by the first discontinuous derivative of a thermodynamic potential. A phase 

transition from water to ice, for example, involves latent heat (a discontinuity of the heat 

capacity) and is of first order. The aim of this work is to study the magnetic properties and 

quantum phase transition in the Heisenberg spin-two system.  

The remainder of this paper is organized as follows. In section 2, we give a brief 

description of the Heisenberg spin-two system. Section 3 investigates the effect of 

longitudinal field on the spin-two system. Section 4 investigates the effect of transverse field 

on the spin-two system. Section 5 investigates the effect of mixed field on the spin-two 

system. Section 6 investigates the response of this system to finite temperatures. We present 

and discuss results in section 7. We conclude in section 8. 

 

2. TWO-SPIN HEISENBERG SYSTEM  

This section Present the simplest possible Heisenberg cluster, i.e. the spin-1/2 two–

site dimer.  Periodic boundary conditions (PBC) is imposed on the spins so that zz

N SS 11  . 

Thus, the topology of the spin space is that of a circle as shown in Fig.1.  

http://en.wikipedia.org/wiki/Energy
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Fig. 1. A two site chain.  A two-site open chain whose topology is that of a circle on the 

application of periodic boundary conditions.     

The Heisenberg model in one dimension is given by       
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where J is the superexchange coupling parameter between spins on site i  and j  which 

decays rapidly with the distance between these sites. 

iS and  x

iS  are the spin operator in the 

z- and x-direction. The spin raising ( 

iS ) and lowering ( 

iS ) operators help to preserve the 

antiferromagnetic ground state. These operators act in the reduced Hilbert space of no doubly 

occupied sites. h  and xh are the longitudinal and transverse field respectively. 

Since a spin have two configurations in space (i.e. spin up or spin down) and the exclusion of 

doubly occupied site is understood, the size of the Hilbert space of a Heisenberg cluster with 

N spins is 2
N
.  Hence, for two-spin system, the size of the Hilbert space is 4. The basis states 

are: 

        214,2,13,2,12,2,11              (2) 

3. EFFECT OF EXTERNAL LONGITUDINAL MAGNETIC FIELD.  

The Hamiltonian for longitudinal field for the two-spin system expressed in the form 

of creation and annihilation operators is given by  
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If the transverse field is switched off, the action of H in Eq. (1) on the Hilbert space of the 

two-spin system gives  
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Observe that the external longitudinal field does not have effect on antiferromagnetic states. 

Therefore, the Hamiltonian matrix in the presence of external longitudinal magnetic field 

gives 
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The energy levels arising from Eqn. 8 are given by. 

          
4/3/,4/1/,/41/,/4/1/ 4321   JEJEJhlJEJhJE           (9) 

 

 

4. EFFECT OF EXTERNAL TRANVERSE MAGNETIC FIELD 

The Hamiltonian for transverse field expressed in the form of creation and 

annihilation operators for two-spin system is given by Eq. (14).  
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The actions of the transverse field on each of the basis states are  
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If the longitudinal field is switched off, the Hamiltonian matrix arising from the action of H 

in Eq. (1) on the Hilbert space of the two-spin system is given by  
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The energy levels arising from the matrix in Eq. (15) are the same as those in Eq. (9). This 

invariably suggests that both the longitudinal and transverse fields have the same effect on 

the two- spin system. We shall further confirm this observation in section 7. 

 

5. MIXED FIELDS 

The Hamiltonian for mixed field (i.e. involving both longitudinal and transverse 

fields) is given by  
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In terms of creation and annihilation operators, Eq. (16) is expanded for two-spin system to 

give 
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The interaction of this mixed field with the two-spin system gives 
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The Hamiltonian matrix arising from the interaction of this mixed field with two-spin system 

gives  

                                 




































4222

2422

224
0

22
0

4

JJhh

JJhh

hh
h

J

hh
h

J

H

xx

xx

xx
z

xx
z

                                         (22) 

 

 

6. EFFECT OF FINITE TEMPERATURES ON TWO-SPIN SYSTEM 

At finite temperatures, T enters the Hamiltonian through the uniform magnetization 

given by  
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For two-spin Heisenberg system, this is simplified to give 
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   JhCos

hSin
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exp12

2
),(


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In the unit of the Boltzmann constant k=1, the magnetization takes the form       
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 TJThCos

ThSin
Thm

exp12

2
),(


                                                          (25) 

Magnetic field dependence of the uniform magnetization has been calculated for fixed 

T=0.05, 0.1 and 0.2, and the temperature dependence of the uniform magnetization has also 

been calculated for fixed h=60J, 70J and 80J.   These results as well as the figures illustrating 

the dependence for both magnetic field and temperature will be presented in section 7.  

  

7. RESULTS AND DISCUSSION 

This section presents and discusses the results obtained for two-spin Heisenberg 

system in the presence of external longitudinal, transverse and mixed magnetic field. The 

eigenvalues arising from the transverse field can easily be shown to be same with those of the 

longitudinal field. Therefore, our discussion will be restricted to longitudinal and mixed field.  

 

I. LONGITUDINAL FIELD 

The results presented in Tables 1 and 2 for longitudinal field have been obtained from 

the exact diagonalization of the Hamiltonian matrix in Eq. (8) and the eigenvalues in Eq.(9) 

respectively. As shown in Table 1 above, the threefold degenerate triplet excited states 

observed at zero magnetic field split into three distinct states at finite fields. At hzc=J, S
z
tot =1 

becomes the ground state energy, hence magnetization jumps from 0 to 1 (i.e. a jump from 

antiferromagnetic to ferromagnetic ground state). The four energy levels of this system for 

various values of hz/J are shown in Table 2. Again, at hz/J =1, the ground state shift from E4/J 

to E1/J, indicating a quantum phase transition from antiferromagnetism to ferromagnetism. 

This variation of the energy levels with the external magnetic field is shown in Fig.2, while 
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the quantum of magnetization from 0 to 1 is captured by Fig. 3. The ground state energy E4/J 

and the first excited state E3/J are constant irrespective of the value of the field. This is 

because pure antiferromagnetic states are not affected by external longitudinal field. The 

energy level E2/J exhibits a linear behaviour with hz,  while E1/J exhibits an inverse behaviour 

with hz.  

 

Table1. Eigenvalues at hz=0 and hz≠0 for two-spin Heisenberg system 

 

 

 

 

 

 

 

Table 2. The energy levels of two-spin system as a function of  hZ 

 

 

 

 

 

 

Eigenvalues 

(h=0) 

Eigenvectors Eigenvalues 

 (h≠0) 

S
z
tot 

J/4  2,1  J/4-h 1 

J/4  2,1  J/4+h -1 

-3J/4  21212/1  -3J/4 0 

J/4  21212/1  J/4 0 

hz/J  E1/J  E2/J  E3/J  E4/J  

0  0.25  0.25  0.25  -0.75  

0.5  -0.25  0.75  0.25  -0.75  

1  -0.75  1.25  0.25  -0.75  

1.5  -1.25  1.75  0.25  -0.75  

2  -1.75  2.25  0.25  -0.75  
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Fig.2. 

Energy levels of two-spin Heisenberg system as a function of an external longitudinal field 

 

 
Fig. 3. Zero-temperature magnetization of two-spin Heisenberg system 

 

 

II MIXED FIELD   
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ferromagnetic alignment of two spins is favoured if hx and hz are simultaneously varied as 

shown in the last column of Table 3.  This study therefore reveals that the two-spin system 

responds faster to hx and hz when varied simultaneously than when varied separately.  

The gradual emergence of ferromagnetic ground state as the fields hz and hx are 

gradually varied independently and simultaneously is shown in Table 4. The 

antiferromagnetic state (ATFS) is unaffected by external magnetic field, and maintains the 

value of -0.75 for all values of hx or hz. For zero and weak fields, this value is sufficient to 

sustain the system in an antiferromagnetic ground state. As the external field is switched on, 

the ferromagnetic state (E1/J) becomes active and begins to compete with the 

antiferromagnetic ground state (E4/J). At sufficiently large field, antiferromagnetic ground 

state is suppressed and ferromagnetic ground state emerges. As shown in Table 4, the 

emergence of ferromagnetic ground state is more rapid when hz and hx are simultaneously 

increased than when they are increased independently. 

 It is possible to determine the critical mixed field (hzxc) at which the two-spin system 

undergoes a quantum phase transition from an antiferromagnetic ground state to a 

ferromagnetic ground state. As shown in Table 5, the system is observed to undergo a 

quantum phase transition at a critical field of hzxc=0.7071 at J=1. This is lower than hzc=hxc=1 

for the separate field of longitudinal and transverse respectively. This shows that quantum 

phase transition can be hastened up if both longitudinal and transverse are combined together 

(i.e. if they are mixed).  
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Table. 3.  Effect of mixed field on two-spin Heisenberg system at J=1. 

hz hx G.S  

(fixed hz) 

hx hz G.S 

(fixed hx) 

hx hx G.S 

(hx=hz) 

0.1 0.5 -0.7500 0.1 0.5 -0.7500 0.20 0.20 -0.75000 

0.1 1.0 -0.7500 0.1 1.0 -0.7500 0.40 0.40 -0.75000 

0.1 1.5 -1.2533 0.1 1.5 -1.2533 0.60 0.60 -0.75000 

0.1 2.0 -1.7525 0.1 2.0 -1.7525 0.80 0.80 -0.88137 

0.1 2.5 -2.5200 0.1 2.5 -2.5200 1.00 1.00 -1.16421 

 
 
 

Table 4. Emergence of ferromagnetic ground state 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The critical field for mixed field 

 

 

 

 

 

 

 

 

 

 

 

 

hz hx hx=hz ATFS  Emerging  FGS 
At fixed hz 

Emerging  FGS 
At hx=hz 

hz 

0.1 0.2 0.2 -0.7500 0.250000 -0.032843 0.1 

0.1 0.4 0.4 -0.7500 -0.162311 -0.315685 0.1 

0.1 0.6 0.6 -0.7500 -0.358276 -0.598530  0.1 

0.1 0.8 0.8 -0.7500 -0.556226 -0.881371 0.1 

0.1 0.9 0.9 0.7500 -0.655539 -1.022790 0.1 

0.1 1.0 1.0 -0.7500 -0.754988 -1.164210 0.1 

0.1 1.5 1.5 -0.7500 -1.255330 -1.871320 0.1 

hz=hx 

 

AFGS  Emerging  FGS 

 0.6000 -0.7500 -0.59853 

0.6500 -0.7500 -0.66924 

0.7000 -0.7500 -0.73995 

0.7070 0.7500 -0.74985 

0.7071 0.7500 -0.74999 

0.7100 -0.7500 -0.75409 

0.7200 -0.7500 -0.76823 

0.7400 -0.7500 -0.79652 

0.8000 -0.7500 -0.88137 

1.0000 -0.7500 -1.16421 



12 
 

III EXPERIMENTAL REALIZATION OF QUANTUM PHASE TRANSITION IN 

CUPRATE SUPERCONDUCTOR 

In a pulsed magnetic-field experiment, Balakirev et al (2003), found strong evidence 

at very low temperatures that there is indeed a quantum phase transition (QPT) at optimum 

doping in a cuprate superconductor  Bi2Sr2-xLaxCuO6+  (BSLCO). In their work, as shown in 

Fig.4, the doping dependence of the normal-state Hall coefficient measured under 58T 

magnetic field was found to show a sharp break at optimum doping. This is an indication of a 

phase transition. Notably, the break in the dependence of Hall resistivity on magnetic field 

became sharper and sharper with lowering temperature, suggesting that the observed feature 

is truly a result of a zero-temperature transition. In subsequent experiment with the same 

material by Ando et al (2004), two QPTs in the superconducting doping regime were 

observed. From these similar behaviours across a wide range of different materials, one can 

argue that the occurrence of high temperature superconductivity is fundamentally related to 

quantum fluctuations associated with a zero-temperature phase transition. QPT in a transverse 

magnetic field has also been realized experimentally for the first time in 1D Ising 

ferromagnet CoNb2O6 (Coldea et al, 2010). Ultracold atoms in optical lattices has also 

provided a versatile tool with which to investigate fundamental properties of quantum many-

body systems  such as quantum phase transition and quantum spin dynamics (Weitenberg et 

al, 2011). 

 

 

 

http://www.nature.com/nature/journal/v471/n7338/full/nature09827.html?WT.ec_id=NATURE-20110317#auth-1
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Fig.4. Experimental evidence for QPT in Cuprates. 

(Source: Balakirev et al, 2003) 

  

IV. UNIFORM MAGNETIZATION AT FINITE TEMPERATURES 

At finite temperatures, the quantum jump observed in Fig.3. is smoothened out. This 

is because they are wiped out by thermal fluctuations. The magnetic field and temperature 

dependence of the uniform magnetization are calculated and presented in Tables 6 and 7 

respectively. The temperature dependence of the uniform magnetization depends on the 

strength of the applied magnetic field. If the applied field is lesser than the critical field 

strength, the zero-temperature magnetization vanishes, and ),( Thm  is thermally activated as

)exp()exp(),( hhThm   . On the other hand, if the applied field exceeds the critical 

field strength at zero temperature, uniform magnetization is activated as

)exp(1),( hThm  . In both cases, at sufficiently large temperatures, ),( Thm  exhibit 

Curie-like decay just like the Ising systems. This behaviour of ),( Thm  at finite temperatures 
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is illustrated in Figs.5 and 6. An increase in h favours ferromagnetic alignment of the spins, 

while an increase in temperature favours antiferromagnetic alignment of the spins.  

 

Table 6. Variation of m(hZ,T) with hZ for fixed values of T for  Heisenberg two- spin system.  

 

 

 

 

 

 

 

 

 

Table 7. Variation of m(hZ,T) with T for fixed values of hZ for  Heisenberg two- spin system. 

 

 

 

 

 

 

h/J  m( hZ,T) 

T=0.05J  

m( hZ,T) 

T=0.1J  

m( hZ,T) 

T=0.2J  

30  0.00007  0.00846  0.08355  

40 0.00238 0.04659 0.17985 

50  0.07265  0.21868  0.34441  

60  0.71999  0.61584  0.55704  

70  0.98828  0.90179  0.75062  

80  0.99964  0.98134  0.87810  

90  0.99998  0.99669  0.94518  

100  0.99999  0.99942  0.97634  

   

 

 

 

 

 

T/J  m(h,T) 

h=60J  

m(h,T) 

h=70J  

m(h,T) 

h=80J  

0.01 0.99116 1.00000 1.00000 

0.04 0.76494 0.99610 0.99995 

0.06 0.68711 0.97576 0.99865 

0.10 0.61584 0.90179 0.98134 

0.60 0.45530 0.53463 0.61000 

1.00 0.36115 0.41835 0.47372 

1.60 0.26439 0.30655 0.34783 

2.00 0.22229 0.25809 0.29333 
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Fig 5. Magnetic field dependence of the uniform magnetization of a 2-site Heisenberg system 

for given values of T. 

 

 

Fig 6. Temperature dependence of the uniform magnetization of a 2-site Heisenberg system 

for given values of h.   
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8. CONCLUSION   

The magnetic properties of two-spin system have been studied with the Heisenberg 

quantum antiferromagnetic model. At the critical longitudinal magnetic fields of hzc=J and 

transverse field of hxc=J, the system undergoes a quantum phase transition (QPT) to the 

ferromagnetic state. The two-spin system exhibits the same behaviour to both transverse and 

longitudinal field. However, it is found that the combined effect of longitudinal and 

transverse fields (mixed fields) hastens up the quantum transition from antiferromagnet to 

ferromagnet. For this mixed field, a critical field of hxzc=0.7071 is observed. At this critical 

field, the system is expected to undergo a quantum phase transition from antiferromagnetic 

ground to ferromagnetic ground state. The experimental evidence of this QPT has been 

observed at optimum doping in the cuprate Bi2Sr2-xLaxCuO6+δ and 1D Ising ferromagnet 

CoNb2O6 (Balakirev et al 2003; Coldea et al, 2010).  

 The quantum magnetization observed at zero temperature for the Heisenberg spin-two 

systems was completely wiped out at finite temperatures due to thermal fluctuation. A 

temperature increase is expected to disrupt the ferromagnetic alignment of spins thereby 

favouring antiferromagnetism. On a macroscopic view, this accounts for the disappearance of 

magnetic field when a magnet is subjected to thermal heating in accordance with curie’s law.  
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