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ABSTRACT  

This paper presents a detailed and quantitative study of the dynamics of strongly 

correlated electron systems with one hole less than half-filling. This study is carried out by 

investigating the propagation of a hole in finite Systems of eight and ten sites tilted square 

clusters within the t-Jz model using exact diagonalization (ED) method. The result obtained 

from (ED) study of the doped tilted square cuprates at Nagaoka limit, weak and strong 

coupling regimes agrees excellently with the result obtained by ref. [1] in Lanczos and Mote 

Carlo study of 4x4 cluster. The well-known intermediate coupling result for the string picture 

is effectively reproduced for N=10 in agreement with ref. [1] who used N=64 and ref. [2] 

who used N=256 for the pure t-J model. The difference between the result obtained in the 

intermediate regime by ref. [1] and this current study may likely be due to the difference in 

the system size.     

 

1. INTRODUCTION  

The behaviour of the cuprates unlike the conventional superconductors is known to be 

governed by strong electronic interactions. This has spurred interest in the field of strongly 

correlated electron systems with the hope that it will unravel the mystery behind 

superconductivity in the cuprates and possibly solve the problems inherent in these materials. 

The cuprates are also classified as Mott insulators with dominant physical processes (charge 

transport, antiferromagnetic exchange…..) that participate in the formation of the 

superconducting condensate located in the copper-oxygen planes [3-5]. At half filling, 
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hopping of electrons is highly forbidden due to the strong onsite electronic repulsion. The 

magnetic properties of these half-filled (undoped) systems are well described by the isotropic 

spin-1/2 Heisenberg model [6-8]. It has been observed that under light doping, which 

removes electrons thereby producing mobile holes in the CuO2 planes, antiferromagnetic 

ordering is destroyed and the compound becomes superconducting [1]. A study of hole 

motion in a classical Neel state in two dimensions by ref [9-11] concluded that the motion of 

the hole is confined. By considering quantum spin fluctuations and some complicated paths, a 

single hole was made mobile [12-15]. But recent discovery of string excitations in ARPES 

studies of cuprates seems to be in support of the string picture proposed by ref. [11] in the 

intermediate coupling regime [16,17,2]. It is therefore obvious that there is lack of consensus 

regarding the dynamics of a hole in an antiferromagnet. This field is still evolving with 

theoretical and experimental researches geared towards addressing some of the problems of 

this hole dynamics.  This work employs the exact diagonalization method with well 

constructed tilted square clusters of eight and ten sites to study the coherent and incoherent 

propagation of a hole in an antiferromagnet. The ultimate goal of this paper is to see if a 

single hole motion on relatively small system size systems within the t-Jz can reproduce the 

known dominant results. 

  

2. DERIVATION OF AN EFFECTIVE HOLE HAMILTONIAN IN 2D 

The Ising Hamiltonian (  Jt model) obtained by removing the spin flip term from 

the generalized Jt   model is given by 
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where t is the kinetic energy term, )(  ji cc
 are the creation (annihilation) operators, 

UtJ /4 2  is the antiferromagnetic exchange coupling parameter between spins on sites i  
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and j ,   
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2

1
 is the spin operator in the z direction and the symbol ji,  

means that hoppings are constrained to nearest neighbour site. Eq. (1.0) is with an understood 

restriction to unoccupied and singly occupied sites.    

The energy of a single hole on a tilted NN    square lattice is given by  

                                                          
2

NJ
EEH z

ohNh                                     (2.0) 

where EN is the energy of the Neél state, N is the number of sites and Eoh is total energy of 

the system in the presence of a hole. The single hole Hamiltonian can therefore be 

constructed as follows 

                                                                                ohEHH                                          (3.0)
 

As the hole propagates in an antiferromagnetic background, destroying the Neél ordering of 

the spin, ferromagnetic links are produced. Since the cost of each ferromagnetic bond is Jz/2, 

the magnetic part of H   acting on a class   takes the form 
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where        ii nnji,  and ji  .
 

The last term in eqn. (4.0) is due to the four 

antiferromagnetic links that were destroyed once a hole is created in a Neél state. Since the 

system is translationally invariant, Eq. (4.0) gives  

                  

      NZZZZZZJ RJERJERJE
N

H
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1

21         (5.0) 

where R1 R2... RN are members of the class   generated by the translational operator T 

given by 
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Further simplification of eqn. (5.0) gives 
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On adding the hopping term in H   to Eq. (1.0), the complete single hole  

Hamiltonian acting on a state n gives 

                    
    nZZynxnn JEtH  

 ˆˆ                          (8.0)                                                           

where x̂ , ŷ  are unit vectors in the directions x , y  and n=0,1..., Nh-1. Here, Nh is the 

number of state in the reduced Hilbert space. It is given by   

                                   
 2)!12(

)!1(2




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NN

N
Nh                                                              (9.0) 

                                    

      3. THE TOPOLOGY OF EIGHT AND TEN SITES TILTED SQUARE CLUSTERS  

The topology of eight and ten sites tilted clusters are respectively shown in Fig. 1 and 

Fig. 2. 

 

 

 

 

 

 

Fig. 1. The topology of an eight sites tilted square cluster. Fig (a) is the original cluster 

without periodic boundary conditions (PBC). Fig. (b) is obtained when  periodic boundary 

conditions is imposed on the open cluster. 
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Fig. 2. The topology of a ten sites tilted square cluster. Fig. (a) is the original cluster without 

periodic boundary conditions (PBC). Fig. (b)  is due to periodic PBC. 
 

 

The number of antiferromagnetic links NAL in any 2-dimensional cluster is given by    

                                                                                  NNAL 2                                          (10.0) 

where N is the number of sites. Therefore, for an eight sites tilted cluster, NAL =16. These 

links are. 

(1,2), (1,6),(1,8), (1,4), (2,3), (2,5),(2,7), (3,4)  

(3,6), (3,8),(4,5), (4,7), (5,6), (5,8),(6,7), (7,8)  

where for instance (1,2) refers to the antiferromagnetic link  21  or  21 . The 

number of antiferromagnetic links for 10 sites tilted cluster is 2x10=20. These links are  

(1,2), (1,4),(1,8), (1,10), (2,3), (2,5),(2,9), (3,4)(3,6), (3,10), 

(4,5), (4,7), (5,6), (5,8),(6,7), (6,9),(7,8),(7,10), (8,9),(9,10)  

By using Eq. (9.0), the size of the Hilbert space for eight site tilted square can be reduced 

from 280 to 35 and that for ten site tilted square can be reduced from 1260 to 260.  

 

4. RESULTS AND DISCUSSION  

 This section presents numerical exact diagonalization results for 88   and 

1010   clusters. The results obtained for the energy of the hole Eh/t at various values of 

the magnetic coupling constant Jz/t is presented in the Table 1. For comparison, the string 
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picture by ref. [11] and the results obtained by ref.[1,18] on a 4x4 square cluster by both the 

Lanczos technique (LT) and quantum Monte Carlo (QMC) method are also included in Table 

1. These results will be discussed under the following regimes namely, Nagaoka’s limit, weak 

coupling, intermediate coupling and strong coupling. 

 

Table 1. Exact numerical ground state (GS) energy of a hole for N=8 and N=10 tilted 

clusters. Comparison is made between the results obtained by exact diagonalization (ED) 

method and the numerical results from quantum Mote Carlo(QMC) and Lanczos Technique 

(LT) [1,18]  

 

 

I. NAGAOKA’S LIMIT
 

In this limit, a hole is not confined in a linear potential, and so it can propagate freely 

through the antiferromagnetic background without losing energy. On account of this, the 

number of broken bonds or aligned spin pairs increases, amounting to increase in the size of 

the polaron. This will eventually gives rise to a ferromagnetic ground state of (2S
max

 +1)-fold 

JZ/t EXACT 

E/t (N=8) 

EXACT 

E/t (N=10) 

LT 

E/t (N=16) 

 

 

 

 

QMC 

E/t (N=16) 

 

 

STRING 

PICTURE 

0.00 -4.00000 -4.00000 -4.00000 -4.0000 -3.46410 

0.01 -3.96431 -3.95454 -3.92530 -3.9254±0.0001 -3.33692 

0.02 -3.92866 -3.90927 -3.85187 -3.8516±0.0002 -3.26222 

0.05 -3.82196 -3.77466 -3.63864 -3.6384±0.0004 -3.09223 

0.10 -3.64507 -3.55445 -3.30627 -3.306±0.001 -2.87379 

0.20 -3.29528 -3.13113 -2.75419 -2.755±0.002 -2.52703 

0.40 -2.61658 -2.36632 -2.07192 -2.084±0.009 -1.97660 

0.60 -1.97872 -1.72806 -1.56082 -1.551±0.008 -1.51492 

0.80 -1.40104 -1.20773 -1.11920 -1.131±0.008 -1.10284 

1.00 -0.89746 -0.77112 -0.72325 -0.709±0.009 -0.72410 

1.50 0.08869 0.12443 0.13728 0.145±0.003 0.12631 

2.00 0.86658 0.87790 0.88237 0.883±0.007 0.88538 

2.50 1.55199 1.55623 1.55808 1.557±0.002 1.58302 

3.00 2.18634 2.18817 2.18902 2.185±0.003 2.23533 

4.00 3.36844 3.36889 3.36914 3.368±0.002 3.44027 
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degenerate with energy Eh=-4t or Eh/t=-4, where S
max 

= (N-1)/2 and N is the number of sites. 

This limit called the Nagaoka’s polarized state occurs at Jz/t=0 [19]. This limit is captured by 

both N=8 and N=10 as shown in Table 1  

 

II. WEAK COUPLING REGIME (JZ<<t )  

According to Dagotto et al (1989), in this regime, Eh takes the form 

                                                        












1

1
1

2
4

2

2

L
L

J
tE z

h                                  (11.0) 

where L is the length of the side of the square. The ED result in this regime and that obtained 

from Eq. (11.) are shown in Table 2. For comparison, the result obtained by ref. [1] with the 

Lanczos technique (LT) on 4x4 cluster is also included. These two presentations are in 

excellent agreement, showing that the weak coupling regime is well captured by the system 

size studied. Fig. 3 gives a graphical illustrations of the hole energy in this regime. For 

sufficiently small value of JZ/t as shown in Fig. 3, the energy of the hole for any number of 

sites is expected to converge to a common value. Consequently, Eh will become less 

dependence on Jz. Also, the kinetic energy of the hole is well minimized since the magnetic 

energy cost is small. As Jz becomes smaller, the number of flipped spins increases as the hole 

propagates. Consequently, the size of the polaron is increased.  

 

Table 2.  Result for weak coupling regime 

      ED  Result 

    ED 

 

From Eq. (11.0)       LT 

Eh/t(N=16)  JZ/t   Eh/t(N=8)   Eh/t(N=10)      Eh/t(N=8)       Eh/t (N=10) 

0.00002   -3.99993  -3.99991  -3.99993 -3.99990  -3.99984  

0.00004   -3.99986  -3.99982  -3.99986 -3.99980  -3.99968  

0.00006   -3.99979  -3.99973  -3.99979 -3.99970  -3.99952  

0.00008   -3.99971  -3.99964  -3.99971 -3.99960  -3.99936  

0.00010   -3.99964  -3.99954  -3.99964 -3.99950  -3.99920  

0.00020   -3.99929  -3.99909  -3.99929 -3.99899  -3.99839  

0.00040   -3.99857  -3.99818  -3.99857 -3.99798  -3.99679  
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Fig.3. Energy of a hole in the Weak coupling regime 

 

III. STRONG COUPLING REGIME (Jz/t>>1 OR Jz>>t) 

In this regime, the motion of the hole becomes highly incoherent due to increase in 

linear rising potential that tends to confine the hole to its original site. This is because an 

increase in Jz will increase the amount of magnetic energy paid by the hole in destroying 

antiferromagnetic bonds and creating new ferromagnetic bonds. Hence, in the strong 

coupling regime, the hole may be treated as a localized particle, and to second order in t/Jz, 

the hole energy according to ref. [1] becomes  

                                                                   z

zh
J

t
JE

3

8 2

                                                 (12.0) 

The results obtained from the ED of N=8 and N=10 and that from Eq. (12.0) as 

presented in Table 3 are in reasonable agreement. This behaviour of Eh at this regime is also 

visible in Fig.4. It shows that in the strong coupling regime, the energy of a hole is 

independent of the system size in accordance with Eq. (12). For comparison, the result 

obtained by ref. [1] with the Lanczos technique (LT) on 4x4 cluster is also included. Since 
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the hole is strongly confined in this regime, the number of “anti-Neel spins’’ which is a 

measure of the size of the polaron decreases significantly.  

 

Table 3. Result for Strong coupling regime 

Jz/t  N=8 (ED)  N=10 (ED)  From eqn.38  

4.0  3.36844  3.36889  3.33333  

5.0  4.48558  4.48573  4.46667  

6.0  5.56682  5.56688  5.55556  

7.0  6.62627  6.62630  6.61905  

8.0  7.67156  7.67158  7.66667  

9.0  8.70717  8.70718  8.70370  

10.0  9.73588  9.73588  9.73333  

 

 

Fig.4. Energy of a hole in the strong coupling regime 
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IV. INTERMEDIATE COUPLING 

If a hole is prevented from propagating through winding paths (Trugman loops), then 

we have a hole motion on a Bethe lattice. This is the approximation used by ref. [11] to 

obtain the result in the last column of Table 1. This approximate result known as the string 

picture and valid at the intermediate region 1/105 3   tJ z  is giving by. 

                                       
  3

2

/74.232/ tJtE zh                                                        (13.0) 

As t-J models of the high-Tc materials typically assume J=0.1eV [20] and t=0.3eV 

[21], this regime therefore captures the intermediate-coupling region (Jz t      ), which is of 

greatest interest. This intermediate regime as shown in Fig.5 is investigated for N=8 and 

N= 0 in the range 0.0 ≤Jz t≤ , and comparison is made with N= 6 and string estimate. The 

behaviour of the graphs for both N=8 and N=10 is similar to that of N=16 and the string 

estimate. This shows that a power law description of Eh in this regime is present in N=8 and 

N=10. In the region 1/105 3   tJ z , the curve for N=10 can be approximately fitted to 

give 

                                              
  32

228.3999.3 tJtE zh                                             (14.0) 

Similar power law behaviour can also be obtained for N=8. A QMC result for 8x8 square 

lattice in this regime by ref. [1] gave a fit given by 

                                               
  32

93.263.3 tJtE zh                                                (15.0) 

The difference of 0.369 and 0.298 observed in the constant term and coefficient of (Jz/t)
2/3

 

respectively between eqn. (14) and (15) is obviously due to the difference in cluster size 

studied. Within this intermediate regime, the energy of a hole Eh is approximately linear in 

(Jz/t)
2/3

. This approximate linear behaviour is captured in the plot of Eh versus (Jz/t)
2/3

 for 

N=10 as shown in Fig.5. 
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 Fig. 5. Intermediate coupling result for N= 10 compared with N= 16 and the string estimate. 

 

 

 

Fig.6. Linear behaviour of Eh  with  Jz
2/3
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5. EXPERIMENTAL REALIZATION OF STRING EXCITATION IN THE 

INTERMEDIATE REGIME IN 2D CUPRATES 

Recent high resolution ARPES studies of Ca2CuO2Cl2 taken along the cut (0,0) to 

(π,π) as shown in Fig.7 has revealed the presence of dispersive feature at higher energies 

(peak II and III) that merges with the quasiparticle band (peak I) at lower energies  [16,17]. 

The energy of the three peaks as identified by ref.[22]Manousakis and Liu (1992) on 1616  

lattice by perturbation approach in the regime 4.002.0  J  and )2/,2/( K  is in 

agreement with the string excitation of the t-JZ model obtained in this paper. The string 

energies for these peaks as well as the one obtained in this thesis are 

                                              
667.016.228.3 JEI                                                             (16) 

                                              
667.046.528.3 JEII                                                             (17) 

                                              
667.081.728.3 JEIII                                                            (18) 

                                              
  667.0

228.3999.3 tJtE zh                                                (19) 

ref. [2] has also reproduced Eqs. (16), (17) and (18) from the spectral function of a 

hole in a quantum antiferromagnet (the pure t-J model) for J/t=0.3 from (0, 0) to (π, π) as 

shown in Fig.8. He therefore concluded that the string excitation is responsible for the 

transfer of spectral weight from the quasiparticle peak to the high energy peaks as the   

Point is approached.ref[1,22] have also observed similar feature in the t-J model. The t-Jz 

model is therefore robust enough to capture the dynamical properties of a hole in a quantum 

antiferromagnetic background in the region of small coupling. 
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Fig.7. Experimentally determined spectra function of Ca2CuO2Cl2 with ARPES 

(Source: [16]) 

               

Fig.8. Spectra function obtained from t-J model for J/t=0.3 from (0,0) to (π,π)  

(Source: [2]) 

I
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6. CONCLUSION  

We have in this study employ the exact diagonalization method to investigate the 

dynamical properties of a hole on N=8 and N=10 tilted clusters within the  Jt model. The 

behaviour of one hole on N=8 and N=10 tilted clusters is not at variance with the results 

obtained from 4x4 square cluster by ref.[1]. Most importantly, the results obtained at strong 

and weak coupling regimes from these tilted clusters agreed excellently with theirs. The 

string energy obtained in the intermediate coupling for N=10 is in agreement with that 

obtained from Quantum Monte Carlo simulation of N=64 by ref.[1]. The small disagreement 

in this regime arising from the constant term in the hole energy and the coefficient of (Jz/t)
2/3

  

may be due to finite size effect.
  

This string excitation observed in this thesis are responsible for the transfer of spectra 

weight from the low energy quasiparticle peak to higher energy peaks as observed in the 

ARPES data from Ca2CuO2Cl2 [16,17]. The agreement between the results obtained in this 

thesis and that obtained theoretically and experimentally in the region of small coupling 

(J/t<<1) suggests that the   Jt  model is robust enough to capture the dynamical properties 

of a hole in a quantum antiferromagnetic background. Furthermore, in the limit of J/t<<1, the 

spin-relaxation time is much longer than the characteristic time for hoping. As a result, the 

rate at which the spins are being flipped by the hole is faster than the rate at which they are 

being repaired by the spin flip term in the t-J model. Finally, the string energy obtained in this 

study from N=10 tilted cluster provides evidence that the occurrence of these string 

excitations is independent of system size.  
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