On Certain Sufficient Conditions For A Function To Be Close-To-Convex Function

¹Abolape D. Akwu, ²Monsurat A. Ganiyu, and ³Jimoh M.

¹Department of Mathematics, University of Agriculture, Abeokuta, Ogun State, Nigeria. ^{2,3}Department of Physical Sciences, Al-hikmah University, Ilorin, Kwara State, Nigeria.

Abstract

We consider certain properties of $1 - \left(z \frac{g'(z)}{f'(z)}\right)'$ as a sufficient condition for

a function f(z) to be a close-to-convex function.

Keywords: Univalent function, Convex function, Starlike function, Close-to-convex function. 2000 Mathematics Subject Classification. Primary 30C45.

1.0 Introduction

Let A denote the class of functions f(z) which are analytic in the unit disc $U = \{z : |z| < 1\}$ with f(0) = f'(0) - 1 = 0. For a function $f(z) \in A$, we say that it is starlike [1] in the unit disc U if and only if $\operatorname{Re}\left\{\frac{z f'(z)}{f(z)}\right\} > 0$

for all $z \in U$. We denote by S^* the class of all such functions.

We denote by K the class of convex functions [1] in the unit disc U, i.e. the class of univalent functions $f(z) \in A$ for which

$$\operatorname{Re}\left\{1 + \frac{z f''(z)}{f'(z)}\right\} > 0$$

for all $z \in U$.

A function $\dot{f}(z)$ regular in the unit disk |z| < 1 is said to be close-to-convex function [1] if there is a convex function g(z) such that

$$\operatorname{Re}\left[\frac{f'(z)}{g'(z)}\right] > 0$$

It is clearly known [2] that if $\operatorname{Re}\left[\frac{f'(z)}{g'(z)}\right] > 0$ for |z| < 1, then f(z) is close-to-convex. Denote the class of close-to-convex functions by C*.

¹Corresponding author: *Abolape D. Akwu*, E-mail: abolaopeyemi@yahoo.co.uk, Tel.: +2348055960217

On Certain Sufficient Conditions For A Function ... *Akwu, Ganiyu, and Jimoh J of NAMP* The above mentioned classes are subclasses of univalent functions in U and more $K \subset S^* \subset C^*$.

Let f(z) and $\mu(z)$ be analytic in the unit disc. Then we say that f(z) is subordinate to $\mu(z)$, and we write $f(z) \prec \mu(z)$, if $\mu(z)$ is univalent in $U, f(0) = \mu(0)$ and $f(U) \subseteq \mu(U)$.

In this paper, we use the method of differential subordinations. The general theory of differential subordinations introduced by Miller and Mocanu is given in [3]. Namely, if $\phi: C^2 \to C$ (where C is the complex plane) is analytic in domain D, and h(z) is univalent in U, and if p(z) is analytic in U with $(p(z), zp'(z)) \in D$ when $z \in U$, then we say that p(z) satisfies a first – order differential subordination if

$$\phi(p(z), zp'(z)) \prec h(z) \tag{1.1}$$

We say that the univalent function $\mu(z)$ is dominant of the differential subordination (1.1) if $p(z) \prec q(z)$ for all p(z) satisfying (1.1). If $\tilde{q}(z)$ is a dominant of (1.1) and $\tilde{q}(z) \prec q(z)$ for all dominants of (1.1), then we say that $\tilde{q}(z)$ is the best dominant of the differential subordination (1.1).

In the following section, we need the following lemma of Miller and Mocanu [4].

1.1 Lemma [4]

Let q(z) be univalent in the unit disc U, and let $\theta(w)$ and $\phi(w)$ be analytic in a domain D containing q(U), with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) zq'(z) \phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$, and suppose that

a. Q(z) is starlike in the unit disc U,

b.
$$\operatorname{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} = \operatorname{Re}\left\{\frac{\theta'(q(z))}{\phi(q(z))} + \frac{zQ'(z)}{Q(z)}\right\} > 0, \ z \in U.$$

If p(z) is analytic in U, with $p(0) = q(0), p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z) + zq'(z)\phi(q(z))) = h(z)$$

$$(1.2)$$

then $p(z) \prec q(z)$ and p(z) is the best dominant of (1.2). Even more we need the following lemma, which in more general form is due to Hallenbeck and Ruscheweyh [5].

1.2 lemma [5]

Let G(z) be a convex univalent in U, G(0) = 1. Let F(z) be analytic in U, F(0) = 1 and let $F(z) \prec G(z)$ in U. Then for all $n \in N_0$

$$(n+1)z^{-n-1}\int_0^z t^n F(t)dt \prec (n+1)z^{-n-1}\int_9^z t^n G(t)dt$$
(1.3)

2.0 Main Result and Consequences

We shall make use of lemma 1.1 and 1.2 to obtain some conditions for $1 - \left(z \frac{g'(z)}{f'(z)}\right)$ which leads to close-to-convex

function.

2.1 Theorem If $f, g \in A$ and

$$1 - \left(z \frac{g'(z)}{f'(z)}\right)' \prec 2 - \frac{2}{(1+z)^2} = h(z)$$
(2.1)

then $f \in C^*$.

On Certain Sufficient Conditions For A Function ... *Akwu, Ganiyu, and Jimoh J of NAMP* Proof.

We choose
$$p(z) = \frac{f'(z)}{g'(z)}; q(z) = \frac{1+z}{1-z}; \phi(w) = \frac{1}{w^2}; \theta(w) = 1 - \frac{1}{w}$$
. Then $q(z)$ is univalent in $U: \theta(w)$ and $\phi(w)$ are exploring with density $D = -\frac{1}{w}$.

 $U; \theta(w) \text{ and } \phi(w)$ are analytic with domain $D = C \setminus \{0\}$ which contains $q(U) = \{z : \operatorname{Re}(z) > 0\}$ and $\phi(w) \neq 0$ when $w \in q(U)$. Further

$$Q(z) = zq'(z)\phi(z) = \frac{2z}{(1+z)^2}$$

is starlike in U and for the function

$$h(z) = \theta(q(z)) + Q(z) = \frac{2z(z+2)}{(1+z)^2} = 2 - \frac{2}{(1+z)^2}$$

we have

$$\operatorname{Re}\left\{\frac{h'(z)}{Q'(z)}\right\} = \operatorname{Re}\left\{\frac{2}{1-z}\right\} > 0, z \in U$$

Also p is analytic in U, p(0) = q(0) = 1 and $p(U) \subset D$ because 0 is not in p(U). Therefore the conditions of lemma 1.1 are satisfied and we obtain the result that if

$$\theta(p(z)) + zp'(z) \phi(p(z)) = 1 - \left(z \frac{g'(z)}{f'(z)}\right) \prec 2 - \frac{2}{(1+z)^2} = h(z)$$

we have

$$\frac{f'(z)}{g'(z)} = p(z) \prec q(z) = \frac{1+z}{1-z}$$

that is $f \in C^*$

2.2 Example

Let $f(z) = \log_e \frac{k(z)}{z}$, $g(z) = \frac{1+z}{1-z}$ where $k(z) = \frac{z}{(1-z)^2}$, the function f(z) belongs to the class A and $1 - \left(z \frac{g'(z)}{f'(z)}\right)' = \frac{z(z-4)}{(1-z)^2}$ is subordinated to $2 - \frac{2}{(1+z)^2}$. So from Theorem (2.1) $f \in C^*$.

2.3 Theorem

Let
$$f, g \in A$$
, If $1 - \left(z \frac{g'(z)}{f'(z)}\right) \prec h(z)$, $h(0) = 0$ and $h(z)$ is a convex function in

U then

$$\frac{g'(z)}{f'(z)} \prec 1 - \frac{1}{z} \int_0^z h(t) dt$$

Proof.

Let
$$F(z) = \left(z \frac{g'(z)}{f'(z)}\right)' = 1 - \left(1 - \left(z \frac{g'(z)}{f'(z)}\right)'\right)$$
 and $G(z) = 1 - h(z), z \in U$. Then $G(z)$ is a convex

univalent in U, G(0) = 1, G(z) is analytic in U, F(0) = 1. Further we have that

,

$$\left(z\frac{g'(z)}{f'(z)}\right) = F(z) \prec G(z) = 1 - h(z)$$

On Certain Sufficient Conditions For A Function ... Akwu, Ganiyu, and Jimoh J of NAMP

Therefore the condition of lemma 1.2 are satisfied and for n = 0 we obtain

$$\frac{1}{z}\int_0^z F(t)dt \prec \frac{1}{z}\int_0^z G(t)dt$$

If we apply the definitions of F(z) and G(z) in the result above and use the following fact which is true because F(z) is analytic

$$\int_0^z \left(z \frac{g'(z)}{f'(z)}\right) dz = \frac{zg'(z)}{f'(z)}$$

we obtain that

$$\frac{g'(z)}{f'(z)} \prec \frac{1}{z} \int_0^z (1-h(t)) dt = 1 - \frac{1}{z} \int_0^z h(t) dt$$

. .

2.4 Corollary

If
$$f, g \in A$$
, and if $\left| 1 - \left(z \frac{g'(z)}{f'(z)} \right)' \right| < 2, z \in U$ then $f \in C^*$

Proof.

From
$$\left| 1 - \left(z \frac{g'(z)}{f'(z)} \right)' \right| < 2, \ z \in U \ because \ h(z) = 2z \ \text{is univalent and}$$

 $1 - \left(0 \frac{g'(0)}{f'(0)} \right)' = h(0) = 0 \ \text{we get that}$
 $1 - \left(z \frac{g'(z)}{f'(z)} \right)' < 2z = h(z)$

Further, h(z) is convex, so the condition from Theorem 2.3 is satisfied and we obtain

$$\frac{g'(z)}{f'(z)} \prec 1 - \frac{1}{z} \int_0^z h(t) dt = 1 - z$$

that is

$$\operatorname{Re}\left\{\frac{g'(z)}{f'(z)}\right\} > 0$$

Because of that,
$$\operatorname{Re}\left\{\frac{f'(z)}{g'(z)}\right\} > 0$$

that is $f \in C^*$. 2.5 Example

The same functions as in the example above, $f(z) = \log_e \frac{k(z)}{z}$, $g(z) = \frac{1+z}{1-z}$ can be used to illustrate corollary

2.4

$$\left|1 - \left(z \frac{g'(z)}{f'(z)}\right)'\right| = \left|1 - \frac{1}{(1-z)^2}\right| < 2$$

and f(z) is close-to-convex

On Certain Sufficient Conditions For A Function ... Akwu, Ganiyu, and Jimoh J of NAMP 2.6 Corollary Let $f, g \in A$,

1. If
$$1 - \left(z \frac{g'(z)}{f'(z)}\right)' < \frac{\alpha z}{1+z} = h(z), 0 \le \alpha \le \frac{1}{2}(1-\ln 2)$$
 then *f* is close-to-convex
2. If Re $-\left\{1 - \left(z \frac{g'(z)}{f'(z)}\right)'\right\} < \frac{1}{2}(1-\ln 2) = 1.629445, z \in U$ then *f* is close-to-convex

Proof.

1. From
$$h(0) = 0$$
 and $h(z)$ is a convex function in the unit disc U and by Theorem 2.3 we get that

$$\frac{g'(z)}{f'(z)} \prec 1 - \frac{1}{z} \int_0^z h(t) dt = 1 - 2\alpha + 2\alpha \frac{\ln(1+z)}{z} = q(z)$$

Now from

Re {
$$q(z)$$
 }= 1 - 2 α + $\frac{2\alpha}{|z|^2} [x \ln |1 + z| + y \arg (1 + z)]$
Im { $q(z)$ }= $\frac{2\alpha}{|z|^2} [x \arg (1 + z) - y \ln |1 + z|]$

.

where z = x + iy, it follows that q(U) is symmetric with respect to the x-axis and so $\operatorname{Po} \int q(z) dz = \min \int q(1) - q(1) dz = q(1) - 1 - 2\alpha dz = 2\alpha \ln 2 > 0$

Re
$$\{q(z)\}$$
 > min $\{q(1), q(-1)\} = q(1) = 1 - 2\alpha + 2\alpha \ln 2 > 0, z \in U$
Thus from $\frac{g'(z)}{f'(z)} < q(z)$ we get that Re $\left\{\frac{g'(z)}{f'(z)}\right\} > 0, z \in U$ and Re $\left\{\frac{f'(z)}{g'(z)}\right\} > 0, z \in U$,

that is *f* is close-to-convex function.

2.
$$1 - \left(z \frac{g'(z)}{f'(z)}\right)'$$
 is analytic in the unit disc *U*, $h(z)$ is univalent in *U* and

$$1 - \left(0 \frac{g'(0)}{f'(0)}\right)' = h(0) = 0$$

Therefore the condition from (1) of corollary 2.6

$$1 - \left(z \frac{g'(z)}{f'(z)}\right) < \frac{2\alpha z}{1+z} = h(z)$$

is equivalent to

$$1 - \left(z \frac{g'(z)}{f'(z)}\right)' \in h(U), \ z \in U$$

Now from $\operatorname{Re}\{h(e^{i\theta})\}=\alpha$ and $h(0)=0<\alpha$, we get that h(z) maps the unit disc *U* into the half plane with real part less than α . So the condition from (1) is equivalent to

$$\operatorname{Re}\left\{1 - \left(z \frac{g'(z)}{f'(z)}\right)'\right\} < \alpha, z \in U$$

If we put $\alpha = \frac{1}{2}(1 - \ln 2)$ here, using (1) we obtain the statement of (2).

On Certain Sufficient Conditions For A Function ... Akwu, Ganiyu, and Jimoh J of NAMP

2.7 Example

For
$$f(z) = \frac{(\log_e z)^2}{2}$$
 and $g(z) = \log_e z$, then $f(z) = \frac{(g(z))^2}{2}$ and we have that $f, g \in A$, and

$$1 - \left(z \frac{g(z)}{f'(z)}\right) = 1 - z^2 \left(\log_e z + 1\right).$$
 Further, for $z = e^{i\theta}$ we get

 $\operatorname{Re}\left\{1-z^{2}\left(\log_{e} z+1\right)\right\}=1-\left(\cos^{2} \theta-\sin^{2} \theta\right)$. So from corollary 2.6 (2) we obtain that f(z) is close-to-convex function.

In conclusion therefore, we can say that from Theorem 2.1, corollary 2.4, and corollary 2.6, we have used certain

properties of $1 - \left(z \frac{g'(z)}{f'(z)}\right)$ to establish the sufficient condition for f(z) to be close-to-convex function.

References

- [1] M. Acu, S.O. Owa, On some subclasses of univalent functions, J. Ineq. Pure and Applied Math. Vol. 6, 3(2005).
- [2] A.W. Goodman, Univalent functions. Vol. I, Mariner Publishing Co. Inc., Tampa, Florida, 1983, MR85j: 30035a.
- [3] S.S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no 2,157-172, MR 83c:30017.Zb1456.3002.
- [4] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), no. 2, 185-195. MR86h:30046.Zb1 575.30019.
- [5] D.J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195, MR 51-10603.Zbl311.30010.
- [6] M. Obradovic, S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), no 2,357-364, MR91d:30015.Zb1 707.30009.
- [7] A.W. Goodman, Univalent functions. Vol. II, Mariner Publishing Co.Inc., Tampa, Florida, 1983, MR85j:30035b.