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                       Abstract 

 
 
In this paper, we provide sufficient conditions for the relative controllability of 

perturbation of nonlinear function differential systems with implicit derivative. This 
result is obtained using Darbo’s fixed point theorem. 

 
 
1.0 Introduction 

Nonlinear systems present a challenge but fascinating area of study in mathematical control theory. They represent 
better approximations of real life dynamics and pose the obvious difficulty of not lending themselves readily to systematic 
and precise procedures of tackling controllability problems. However, several studies have been conducted on 
perturbation of linear systems. In most of these studies results were obtained by placing growth conditions and continuity 
conditions on the perturbation functions; and the Schauder’s fixed point approach was greatly used. Eke [1], Onwuatu [2], 
Balachandran and Dauer [3] have shown that a bounded linear perturbation is controllable provided, the linear base is 
controllable. Nonlinear ordinary systems have been studied by Klamka [4], and Onwuatu [5]. Balachandran and Dauer 
[3], Dacka [6] and Balachandran [7] have considered perturbations of nonlinear ordinary systems with implicit derivative. 
In these studies, together with the dynamics modelled by Chukwu [8,9], the systems are multi-parameter dependent, 
necessitating the redefinition of the fundamental matrix solution and the controllability grammian to take care of these 
systems’ varying arguments. In [4] and [10] nonlinear systems with infinite delays are considered in various spaces. The 
use of Darbo’s fixed point theorem in[6,7] imposed the calculation of the common modulus of continuity of functions in a 
set and consequently the measure of non-compactness of the set to take care of the rigors introduced by the presence of 
implicit derivative. From the foregoing, the relative controllability of nonlinear functional differential systems with 
distributed delays and with nonlinear base remains unsettled especially for some systems with implicit derivative, the 
investigation of which is the main objective of our research here 
 

2.0 Notations And Preliminaries 
Let ( )∞∞−= ,E  and En be the n dimensional Euclidean space with norm ⋅  The symbol [ ]( )nEhCC ,0,−=  

denotes the space of continuous functions mapping the interval [ ] Ehhh ∈>− ,0,0, into nE  with the supremum norm 

•  defined by ( ) 0,;sup ≤≤−∈= θφθφφ hC  

While [ ]( )nEhCC ,0,−′=′  denotes the space of differentiable functions mapping the interval [ ]0,h−  into En with 

sup norm ( ) ( )( ) .;sup C∈′+= φθφθφφ   

Let ( )•,X  be a Banach space and Q a bounded subset of X. The measure of non-compactness of Q, given as µ (Q) = 

inf {r > o: Q can be covered by a finite number of balls of radii less than r}(see [1])  

For the space of continuous functions [ ]( )n
o EttC ,, 1 , the measure of non-compactness of a set Q is given by 
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 ( ) ( ) ( )hQWQWQ
h

,lim

02
1

02
1

+→
==µ  

where W(Q,h) is the common modulus of continuity of the functions which belong to set Q, that is 

 ( ) ( ) ( ){ }hstsytxhQW Qx ≤−−= ∈ :sup, sup    

For the space of differentiable functions [ ]( )nEhC ,0,−′ , we have 

 ( ) ( )DQWQ o2
1=µ  

where 

 { }QxxDQ ∈′= : . 

If [ ]10, ttt ∈ , we let Cxt ∈ be defined by ( ) ( ) [ ]0,, hsstXsX t −∈+=  

Also, for functions [ ] [ ]11 ,,0,,: tttandhEthtu o
m

o ∈>→−  then ut denotes the functions on [-h, 0] 

defined by ( ) ( ) [ ]0,hsforstusut −∈+= . 

Assume the integral is in the Lebesgue Stieltjes sense, and consider the system of interest 

 ( ) ( ) ( ) 






++=
••

ttttttttt uxxtfuuxtBxuxtLtX ,,,,,,      (2.1) 

with the following basic assumptions: 

( ) ( ) ( )stxsdxtL
ht += ∫− ψφηψφ ,,,,

0
 

where the nxn matrix function ( )ψφη ,,,st  is measurable in ( )∈st,  ExE, and normalized so that 

 

( )

( ) ( ) hsallforhtst

allforsst

−≤−=

≥=

ψφηψφη

ψφψφη

,,,,,,

,0;0,,,

 

( )ψφη ,,, st is continuous from the left in s on (-h, 0) and has bounded variation in s on [-h, 0] for each t,ψ,φ and 

there is an integrable function m(t) such that 

 ( ) ( ) ( ) CxandtallforxtmxstL ttt ∈∞∞−∈≤ ,,,,,,, φψφ  

We assume ( )ψφ,,,stL  is continuous. The nxn matrix B(t,xt,ut) given by  

( ) ( ) ( )( ) ( )stustustxtHdsuuxtB
httt +++= ∫− ,,,,

0
 

is continuous on the variables and of bounded variation in s on [-h, 0] also. The function f is continuous and satisfies the 
Lipschitz condition in all its arguments. Enough smoothness conditions on L and f are imposed to ensure the existence of 
solution of systems (2.1)and the continuous dependence of same on initial data. 
 
Definition2.1 
The set y(t)={x(t), xt,ut} is said to be the complete state of system (2.1) [10] 
 
Definition 2.2[10] 

System (2.1) is said to be relatively controllable on [t0, t1], if for every initial complete state y(t0) and every nEx ∈1 , 

there exists a control u(t) defined on [t0, t1] such that the corresponding trajectory of system (2.1) satisfies x (t1) = x1. 
 

Definition2.3 (Darbo’s fixed point theorem) [1] 
If s is a non-empty, bounded, closed, convex subset of x and P: S → S is a continuous mapping such that for any Q ∈ S, 
we have 

 ( ) ( )QkpQ µµ ≤             

where k is a constant 0 < k < 1, then P has a  fixed point. 
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3.0 Main Results  
To solve the relative controllability problem for the system (2.1) we consider the linear approximation of 

 ( ) ( ) tttttt uuxtBxuxtLX ,,,, 1+=
•

              (3.1)                  

by specifying some arguments of L and B to have  

 ( ) ( ) ( ), , v , , vt tX t L t z x B t z u
•

= +        (3.2) 

where the arguments xt, ut of L, and B have been replaced by specified functions CCz ∈′∈ v, . System (2.1) can thus 

be approximated by  

 ( ) ( ) ( ) ( ), , v , , v , ,t t t tX t L t z x B t z u f t x x u
•

= + + &      (3.3) 

for each (z, v) CXC′∈ . One can deduce the variation of parameter for system (3.3) using the unsymmetric Fubini 

theorem. 
 Let X(t,s) = X(t, s, z, v) 
be the transition matrix for the system  

 ( ) ( ) txztLtx v,,=
•

           (3.4) 

so that  

 ( ) ( ) ( )stXztLstX
t

,v,,, =
∂
∂

 

where  

 ( )








=

<≤−
=

st

sths

stX

1

0

,  

and where  

 ( ) ( ) ( ) 0,,, ≤≤−+=• θθθ hstXsX t   

The solution of system (3.3) is given by  

 

( ) ( ) ( ) [ ( )( ) ( ) ( )]

( ) ( ) ( ))dssusXXsfstX

dssuzsHdstXttxtX

s

t

t

h

t

t




+

++=

•

−

∫

∫∫

,,,,

v,,0,,,

0

0

0

0 θθθθθ

  (3.5) 

Using the unsymmetrical Fubini theorem as in Klamka [9] which gives impetus to the change of the order of integration, 
(3.5) can be written as  

 

( ) ( ) ( ) ( ) ( ( ) ( )[ ] )

( ) ( ) ( ( ) ( )[ ] ( )

( ) ( ) ( ) ( ))( dssusXXsfstXttX

dssuzsHdstXttX

dsuzsHdstXttXttxtX

s

t

t

t

t h

t

t

t h

,,,,,

v,,ˆ,,

v,,,,0,,,

1

0

1

0

001

0

0

01

00 0

0

01011

∫

∫ ∫

∫ ∫

+






 −−+

−−+=

−

−

θθθθθ

θθθθθθ

  (3.6) 

where  

 ( )
( )









>

≤
=

.

v,,

v,,ˆ

tsforO

tsforzsH

zsH  
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Let us now define the following notation at t = t1 

( ) (( ) ( ) ) ( )0,,,v,,, 011101 θttXXztXtYgtg −==  

 

( ) ( ( ) ( )[ ]{ } ( ) ( ) ( )( )dssusXXsfstXdsuzsHdstX s

t

t

t

t th
,,,,v,,,

1

0

1

0
0 11

0

∫∫ ∫ −−−−
−

θθθθθ (3.7) 

From (3.6), set z to be  

( ) ( ) ( ) ( ))∫ −= 1

0

,,,v,,, 00

t

t
vzstXzstZ θθθ      (3.8) 

Thus, the controllability grammian of system (3.2) at time t1 is 

  ( ) ( ) ( ) ( )∫== 1

0

v,,,v,,,v,,,, 001010

t

t

T dszstZzstZzttwttW     (3.9) 

where T denotes matrix transpose. 

 

Relative Controllability Results  
 
Given the system (3.3) 

  ( ) ( ) ( ) ( ), , v , , v , ,t t t t tX t L t z x B t z u f t x x u
•

= + + &   

with conditions as spelt out above and where L,B,f are continuous functions in all their variables; and that  

  ( ) ( ), , v t tL t z X m t X≤          (3.10) 

where m(t) is an integrable function and B(t,z,v) is of bounded variation in s on [-h, 0]. The function f satisfies the 
Lipschitz condition with respect to the state variable, and the response is uniquely determined by any control. 
Furthermore,  

(a) ( ) ≤v,, ztL M for each s ∈ [-h, 0] 

(b) ( ) ≤v,, ztL N for each s ∈ [-h, 0] 

(c) ( ) ≤ttt uxxtf ,,, & K for each t ∈ [t0, t1] 

with [ ]( )mEttCuCz ,,, 10∈′∈ , where M, N and K are some positive constants. Also for every 

[ ]10,,, tttandCuCxx ∈∈′∈&  

(d) , , , , , , vt t t t t t t tf t x x u f t y y k x y   − ≤ −   
   

& &     (3.11) 

where k is a positive constant such that 0 < k < 1 
Theorem 3.1 

Assume that  
Inf det W(t0, t1, z, v) > 0          (3.12) 
for Cz ′∈ ,  

then system (3.3) is relatively controllable on [t0, t1], 
Proof  

Define the control u(t) for t ∈ [t0, t1] as follows 

( ) ( ) ( ) ( ) ( )( )v,,,v,,,v,,, 1010
1

0 ztXtYgzttWzstZtu T −=     (3.13) 

where Y(t0) and x(t1) = x1 ∈ En are chosen arbitrarily. The inverse of W(t0, t1) is possible by condition (3.12). Substituting 
(3.13) into (3.6) to replace u(t) and using (3.7) and (3.9) it is clear that the control u(t) defined by (3.13) steers the initial 
complete state Y(t0) to the final state x(t1) = x1 ∈ En. The actual substituting of (3.13) into (3.6) yields  

 

( ) ( ) ( ) ( ( ) ( )[ ]{ }

( ) ( ( ) ( )] ( ) ( ) ( )[[ ]∫ ∫
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+−−+=

−

−

+ −

1

0

0

0
0

110
1

0

0

0

01

,v,,,v,,ˆ,

v,,,0,,,

t

t

T

h

t

st th

tgttWzstXzsHdstX

dsuzsHdstXttxtX

θθθθθ

θθθθθθ
 

Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 491 – 496           



495 

 

On The Relative Controllability Perturbation of…   Iheagwam V.A.  J of NAMP 
 

( ) ))dsuXXsfstX sss

t

t



+
•

∫ ,,,,
0

      (3.14) 

Consider the right hand side of (3.14) as a nonlinear operator which maps the Banach space [ ]( )nEhC ,0,−′  into itself. 

Hence we can write (3.14) as  
X(t) = T(x) (t)          (3.15) 

This operator is continuous. 
Define the nonempty closed, Convex subset G by   

[ ](






 =≤≤−′∈=

•
xDxwhereNDxNxEhCxxG n ,,,,0,: 21   (3.16) 

and the positive real constants N1 and N2 are given by 

( ) ( ) ) ( ) (( )01011
2

010101 expexp ttMttkckbttattMtN −−+−++−Φ=  

kkbcNkMNN ++= 2112  

( ) ( ) ( ) ( )010101011 exp2exp ttMttkattMtXK −−++−Φ+=  

( )

[ ]0,,

v,,,varmax2

hstfor

zstHiationK

−∈

=
 

a = supremum ( ) (( ) ( )[ ]{ } [ ]10

0
,;,,,

1

0
0

tttdsuvzsHdstX
t

t th
∈−−∫ ∫− θθθθθ  

( )

( )1
0 1

sup , , , v

sup , , , v

b Z t s z

z C

c W t t z

z C

−

=

′∈

=

′∈

 

The constants a, b, c and k2 exist since the Lebesgue Stieltjes integral with respect to the variable θ is finite. 
The operator T maps G onto itself. As clearly seen, all the functions T(x(t)) with x ∈ G are equicontinuous since they all 
have uniformly bounded derivatives. Now, we shall find an estmate of the modulus of continuity of the function.  

DT (x)(t) for t, s ∈ [t0, t1] 

( )( ) ( ) ( ) ( ) ( )( ) +−≤− st ysmXtmsyDTtxDT      

( ) ( )( ) ( ) ( ) ( )( ) ( ) ++++−++++ ∫− θθθθθθθθ susszsHdtuttztHd
h

v,,v,,
0

 








−







sssttt uyysfuxxtf ,,,,,, &&       (3.17) 

The first two terms of the right hand side of inequality (3.17) can be estimated as ( )st −0β  where 0β  is a non – 

negative function such that  

  
( ) 0

0
0 =

→
hLim

h
β

    

In the same manner, we find that the other term on the right of (3.17) can be estimated from condition (3.11) as  

  ( ) ( ) ( )stsytxk −+− 1β  

Letting β = β0 + β1 we finally obtain  

  ( )( ) ( ) ( ) ( )stsytxksyDTtxDT −+−≤− β)()(  

Hence, we conclude for any set Q∈G 
  µ (TQ) < kµ(Q). 
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Having met all the requirements for the application of Darbo’s fixed point theorem, we invoke it. Consequently, by 
Darbo’s fixed point theorem, the operator T has at least one fixed point, therefore, there exists a function         x ∈ C′ ([-h, 
0], En) such that  
  X(t) = T(x) (t)        (3.18) 
Differentiating with respect to t, we see that x(t) given by (3.18) is a solution to system (3.3) for the control u(t) given by 
(3.13). The control u(t) steers the system (3.3) from the initial complete state Y(t0) to x1, then by definition 2.2, the system 
(3.3) is relatively controllable on [t0, t1].      
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