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                       Abstract 

 
This paper reports the analysis of direct extrusion operation using the Bubnov-

Galerkin finite element model to get the pressure distributions along the cross-section 
of a blank.  Four Lagrange quadratic elements were assembled to represent the blank.  
The governing equation is a one dimensional differential equation describing the 
pressure on the die-blank interface.  The weighted residual form was obtained from the 
differential equation, the finite element model was obtained in a matrix form from the 
weighted residual, boundary condition were now applied to obtain the pressure 
distribution across the cross-section of the blank.  Finite element results were obtained 
for a particular values of coefficient of friction and blank diameter and compared with 
the exact solution on a  graph.  

 
 
Keywords: Direct extrusion operation, Bubnov-Galerkin residual scheme, finite element model, Lagrange quadratic 
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1.0    Introduction 

Extrusion is one of the major metal forming process in which a block of metal is passed through a die by means of a 
tensile force applied of the exit of the die in order to reduce the cross-section of the metal.  Hence, the need therefore 
arises to analyze the drawing operation in order to predict the various stresses and pressure fields set up at a particular 
cross-section of a given blank material.  The estimated pressures and stresses can thus be compared with the strength of 
the material and this aids the determination of the smallest pressure needed to cause the bulk plastic flow of the material.  
Being an important and versatile metal forming process, a large number of researchers into metal forming process exist in 
literature.  Akpobi and Edobor [1] developed a model for analyzing forging process.  Alfozan and Gunsdrkrts [2] 
proposed an upper bound element technique approach forging by forward and backward simulation.  Navarrete et al [3] 
used a dimensional analysis approach to propose five dimensionless groups from the process variables in an attempt to 
simplify the forging stress determination.  Oviawe and Omorodion [4] determined stresses in hot bar forging,  Ovawe and 
Oviawe [5] analyzed axisymmetric forging operation while Oviawe and Asikhia [6] determined stresses in wire-drawing 
operation. 

 
2.0    Materials and Method 

In this research, the weighted residual finite element method was employed as a numerical tool, used in 
obtaining the extruding stresses and pressure distribution on a material during direct extrusion process.  Due to symmetry, 
analysis was carried out on half the blank.  The blank was represented by a mesh finite element and Bubnov-Galerkin 
weighted residual scheme was applied to get the value of the pressure at nodal points.  Four quadratic elements were used 
to ensure an accurate solution.  A numerical analysis was done to compare the finite element results with the exact 
solution. 
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3.0    Results and Discussion 
Formulation Of Governing Equation 
A number of assumptions that were made in the formulation of the differential equation are: 

� The billet to be extruded is rigid 
� Redundant work is allowed for by an efficiency factor 
� The billet was subjected to hydrostatic pressure, p. 

Considering the equilibrium of a thin slice of billet of width dx, being extruded by direct method, as shown in 
Fig 1, we get 

PdxDdpD µππ =2

4
       (1) 

PdxdpD πµπ 42 =        (2) 

   
Dividing through by Dπ , we obtain 

pdxDdp µ4=         (3) 

  

0
4 =−

D

P

dx

dP µ
       (4) 

 
Equation (4) gives us the governing equation, 
where,  D is the billet diameter, 

 µ  is the coefficient of friction between billet and container wall, and  
  P is the horizontal pressure on the slice.   

                             µµµµ 

 

          µµµµP            

 

                   P              P+dP 

                      D 

                    dx 

 

        µµµµP   

                        P 

         X=0      x=L 

 Fig 1: Free body diagram of direct extrusion process 

Weighted Integral Formulation  
The weighted integral form of equation (4) is obtained by multiplying it by the weight function, V and integrating with 
respect to x over the domain enclosing an element, to get 
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∫ =






 −
L

o
dx

D

P

dx

dP
V 0

4µ
      (5) 

              
  or  
 

∫ ∫ =−
e

o

c

o
dx

D

p
Vdx

dx

dp
V 0

4µ
      (6) 

  
As examination of equation (6) reveals the solution and hence once differentiable with respect to x.  Thus, the Lagrange 
family of interpolation functions can be used satisfactorily.  
Let us assume that the solution P is approximated as follows:   

( )∑
=

=≈
n

ij

e
j

e
j

e xPPP ψ        (7) 

Where, 
e
jψ  = Lagrange quadratic interpolation function at the jth node and 

e
jp  = pressure at the jth node of the element.  

Since we are applying Bubnov-Galerkin weighted residual finite element method in this paper, we assume that the weight 
function is equal to the interpolation function. 

( )xV e
jψ=         (8) 

Substituting Equation (7) and (8) into (6), we get   
 

∫ ∑ ∑ =









−

= =

L

o

n

j

n

ij

e
j

e
j

e
j

e
j

e
j

e
j dxP

D
P

dx

d
0

4

1

ψψµψψ     (9) 

 
 

( ){ }{ }∑ ∫
=

=−
n

ij

e
j

L

o

e
j

e
j

e
j

e
j Pdxd 04 ψµψψψ      (10) 

 
It is imperative to mention that we recast equation (10) to equation (11) as the weighted residual finite element model as 
considered by Akpobi and Edobor [1] 
 

{ }{ }∑
=

=
n

j

e
jij pk

1

0        (11) 

where, 

∫ 






 −=
L

o

e
j

e
j

e
j

e
j

e
ij dx

Ddx

d
K ψψµψψ 4

     (12) 

 
Equation (11) is the weighted-residual finite element model of equation (4).  Using the 1 – D Lagrange quadratic 
interpolation functions,  








 −






 −=
L

X

L

Xe 2
111ψ  

 








 −=
L

x

L

xe 1
4

2ψ  

   






 −−=
L

x

L

xe 2
13ψ  

We generate the matrix  
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∫ 







−=
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o

e
j

e
e

e dx
Ddx

d
K ψψµψψ 1
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D

LD
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ee
e
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Ddx

d
K 21

2
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D

LD
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    ∫ 
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e dx
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d
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e
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d
K 22

2
222

4 ψψµψψ  

 

D

L

60
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e

e dx
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d
K 32

3
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D

LD

60
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Due to symmetry  

D

LD
KK

60
645

3123

µ−=−=  

D

LD
KK

60
89

3212

µ−=−=  

D

Ld
KK

60
1615

3311

µ+=−=  

 
Hence, for one Lagrange quadratic element  
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















++−
−−−−
+−−−−−

=
LDLDLD

LDLLD
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D
K e

ij

µµµ
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   (13) 

 
In order to ensure high accuracy, we used a mesh of four quadratic elements (9 nodes) to get 
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

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

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

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p
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K e
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For a mesh of four 1 – D quadratic elements, the assembled equations are:    
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





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0
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P
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P
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Substituting into Equation (15), it becomes, 
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




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L

LD
LD

LD

LD

L

LD

LD
LDLLDLD

LDLLD

LDLDLD

D
Ke

ij

µ
µ
µ
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µ
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µ
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µ
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µ
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 (16) 

 
 
The boundary condition is: 
At x = L, σx = 0  
From Tresca’s yield criterion,  
σx + P = σo = 2k  
Therefore, x = L, P9 = σo = 2k  
Since there are now eight unknowns, P1, P2, P3, P4, P5, P6, P7 and P8, 
Equation (16) becomes;  
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(17) 

 
The stresses are obtained by substituting the values of the pressures into the equation:   

   Pox −−σσ      … (18) 

The pressure distribution over each element was obtained thus: 
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Exact Solution 
Recall the equation (4) 

( )
D

L

P

P

o

µ4
l=       (19) 

                









= D

L

oP
µ

σ
4

l          (20) 

Numerical example;  

Consider - direct – extrusion operation in which the billet material 150mm long is extruded in 100mm diameter container, 
µ = 0.25. 

Solution: 

Using the mathCAD software for the model developed in Equation (17), the pressures at the nodes as solved by weighted 
residual finite element method and exact solution method are as shown in Fig 2. 

The pressure distribution under direct extrusion, initially rose rapidly from zero as the billet was been expanded to fill the 
container completely and the pressure then decreased as the ram moved along the container and total frictional force was 
reduced Fig 2.  The solution obtained in the case considered can also be applied to indirect extrusion problem.  The 
advantage was as a result of the fact that numerical values of pressure and stresses of such problem can be determined by 
simply substituting the appropriate value of the coefficient of frictionµ , diameter of extruding billet and half length of 

the extruding billet into the difference between the pressure variations described by the finite element and exact solution 
was infinitesimal and negligible Fig 2. 
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        Finite element  

         Exact 

              

 

 

    

 

 

 0  30  60  90    120      150 

Distance travelled (L) mm 
Fig 2: Graphical comparison of the exact solution and finite element solution 
 
Extrusion pressure variation against distance traveled (L) 
Conclusion 

The weighted residual finite element method was capable of adequately and accurately analyzing the stress fields 

set up in a direct extrusion process. 
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