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                       Abstract 

 
The Fishers-Yates algorithm has remained the most widely used statistical 

approach that involves the use of sum of squares of treatments or blocks in the 
determination of mean square errors (MSEs) needful for the computation of F-statistic 
prior to the decision making based on the acceptance or rejection of the null 
hypothesis. A review of literature on design of experiments shows a trend away from 
uncritical acceptance of the approach, thus confirming that sustained effort is being 
made to develop a new method. As part of this effort, this paper attempts to develop a 
novel approach for determining the MSEs in designed experiment. Using the new 
method, the combination of controllable variables that optimized most the surface 
finish of machined workpiece materials was determined with Kronecker product 
analysis which was enhanced by the use of MATLAB software package. The response 

value for the surface roughness, ijklmnX
)

, obtained from the model developed was 

1.5368µm. Residual analysis carried out indicates that the model output was adequate. 
The analytical method explored can be used to develop a statistical software package 
that will be helpful in the computation of sums of squares of observation as well as 
make decision on the null hypothesis without recourse to Fisher’s table. 

 
 

Keywords: Kronecker product, Sum of Squares, Mean sum of squares, Optimization. 

1.0    Introduction 
The surface textures of locally machined products have to be of good quality in order to compete favourably with 

imported ones. Achievement of this quality level has remained a challenge to local machinist in developing countries 
particularly Nigeria. The most cost-beneficial of existing statistical methods used in industry for quality and productivity 
improvement is statistical design of experiments �1�. The machining operation is a production process which generates 
output subject to certain controllable variables. These variables are pre-selected by the machinist based on experience and 
operating standard of the machining company. The appropriate selection of these controllable variables is a major factor 
that determines the degree of surface finish of the machined workpiece. The traditional approach involving the use of 
Yate’s algorithm in conjunction with Fisher’s ratio in making decision in analysis of variance are in some cases, very 
computationally demanding and complicated. The traditional approach works very well when the problem being solved is 
well behaved. However, under certain situations such as nested design involving several treatments and blocks, the 
traditional approach fails to be very effective, thereby calling for a better approach. 

The Kronecker product proposed in the current study has a more intuitive appeal in the sense that it makes use of 
matrix algebra to achieve linear transformation of experimental observations thereby lending computational expediency, 
possibly through the use of software. In this regard, minimization of errors in the measurement of response variables is 
more readily achieved. These attributes combine to make this novel approach very attractive and user-friendly. 

A selective review of relevant work on design of experiment (DoE) is contained in �2�. The review made tangential 
reference to the seminal work done by Fisher which was improved upon in�3� and later �4�. Many studies had focused on 
the optimization of design to achieve the desired response. For example, �5� examined some statistical properties of 
designed experiment. The author explained that design robustness is pursued when the errors in certain factor levels 
cannot be measured. Further, �6� applied design of experiment to optimize models that estimate reservoir of hydrocarbon  
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volume. Also �7� proposed the use of design keys in dealing with the following: 
 (i) identifying treatment effect with particular plot; 
 (ii) contrasting factorial experiment; 

(iii) constructing design. 
They also proposed development of blocked structure for symmetric and asymmetric designs.  
Moreover, �8� researched the use of simulation techniques in estimating computational efforts required to obtain 

desired statistical decision for contemplated statistical estimators that can deal with asymptotic variance and asymptotic 
bias.  

It is instructive to note that a new approach for dealing with designed experiment has been studied by several authors. 
For instance �9� employed tensor product space ANOVA models to deal with the course dimensionality in high-
dimensional nonparametric problems that are able to capture interaction of order. They also examined many properties of 
the tensor product space of Sobolev-Hilbert spaces. Also, �10� had proposed the use of Kronecker product in ANOVA. 
The paper noted that �11� was the first paper to look into the use of Kronecker product in analysis of variance, and that 
thereafter�12�, and �13� followed up the issue. Moreover, �14� studied orthogonality in factorial designs. They explained 
that orthogonality means that all the level combination of any two factors occur equally often. They leaned on the 
standard criterion for optimal factorial design that can engender minimum aberration as proposed in�15�. Other works 
that deal with Kronecker product algorithm include�16�, and�17�. Finally, �18� carried out a comprehensive study of the 
frictional chatter occurring during metal cutting processes. They found out that some of the bifurcation diagrams cannot 
be classified into standard route to chaos, noting that crisis type transition to chaos is dominating.  

Although the work on experimental design is plentiful in DoE literature, little had been devoted to the use of 
Kronecker product especially in minimizing surface roughness of machined workpiece materials. This work therefore 
seeks to employ Kronecker product in determining the sum of squares of sources of variation. The work also 
demonstrates the use of Kronecker product in establishing hypothesis. Our results indicate that the method advocated can 
do away with the use of Yates algorithm that involves great computational efforts in some cases. 
 
2.0 Materials and Methods  

Four types of workpiece materials namely, aluminium, copper, mild steel and stainless steel, were machined using a 
centre lathe machine with standardized process parameters as shown in Table1. 
Table 1: Process Parameters 

Process Parameters Low High 
Rake Angle 100 600 
Speed 140 rev/min 210 rev/min 
Feed Rate 0.04 mm/sec 0.12 mm/sec 
Depth of Cut (DoC) 0.05 mm 0.25 mm 

 
Source: �19� 

 The experimental design data were obtained by using TR100 Surface Roughness Tester to measure the surface roughness 
of the workpiece materials after the machining operation. The full factorial design matrix was developed based on 2n 
array where n is the number of controllable factors. The total runs carried out for each workpiece material are sixteen (16) 
indicating 24. The four controllable factors were taken at two different levels. The design matrix for HSS cutting tool is 
shown in Figure 1 and similar layouts were used for the other three cutting tools namely, ceramic, carbide and cobalt. 
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Fig.1: Design Matrix for HSS Cutting Tool 
The cutting tool type was taken as the treatment while the workpiece material was taken as the block. The matrix in Fig 1 
was reduced to the form shown in Table 2. 

Table 2: Design matrix for Blocked Design 

Tool Type 
Workpiece 

HSS Ceramic Carbide Cobalt 
j=1 j=2 j=3 j=4 

Aluminium, i=1 
11....X  12....X  13....X  14....X  

Copper, i=2 
21....X  22....X  23....X  24....X  

Mild Steel, i =3 
31....X  32....X  33....X  34....X  

Stainless Steel, i=4 
41....X  42....X  43....X  44....X  

 

3.0 Analytical Computations 

Computation of Basic Sum of Squares 
The data matrix of the design matrix for the blocked design is depicted in Table 3. 

Table 3: Blocked Design Data Matrix 

   Tool Type 
 
 
Workpiece 

HSS Ceramic Carbide Cobalt 

j=1 j=2 j=3 j=4 

Aluminium, i=1 0.89 1.06 0.97 1.00 
Copper, i=2 1.03 1.25 0.99 1.22 
Mild Steel, i =3 0.96 1.24 0.96 0.93 
Stainless Steel, i=4 0.97 1.25 1.15 0.93 
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The computation of the elements of the first basic sum of squares using  
 

2

1 1

r c

ij
i j

X
= =
∑∑ = [ ]T

r cY I I Y⊗ , is shown in equations (1), (2), (3), (4).and (5).  

 

Y=

0.89
1.06
0.97
1.00
1.03
1.25
0.99
1.22
0.96
1.24
0.96
0.93
0.97
1.25
1.15
0.93

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

;        (1) 

 
YT = [ ]0.89 1.06 0.97 1.00 1.03 1.25 0.99 1.22 0.96 1.240.96 0.93 0.97 1.25 1.15 0.93 (2) 

 

r

1 0 0 0

0 1 0 0
I

0 0 1 0

0 0 0 1

 
 
 =
 
 
 

      (3)  

 

c

1 0 0 0

0 1 0 0
I

0 0 1 0

0 0 0 1

 
 
 =
 
 
 

      (4) 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0

r cI I⊗ =

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (5) 

 
Equation (6) shows the computed value of the first basic sum of squares. The observations in Table 3 were stacked row-
wise to form a column matrix, Y, shown in equation (1) and the transpose of this matrix is shown equation (2). 
 

[ ]T
r cY I I Y⊗  =    17.8850        (6) 

The computation of the elements of the second basic sum of squares, which is the sum of squares for constant  

using 

2

1 1

2
..

1 1

1 1
( ) [( ) ]T

r c

r c

r c
i j

ij
i j

rc Y rc J J Y
rc

X
X− −= =

= =

 
= = ⊗ 

  

∑∑
∑∑ , is shown in equations (1), (2), (7), (8).and (9).  

 

r

1 1 1 1

1 1 1 1
J

1 1 1 1

1 1 1 1

 
 
 =
 
 
 

       (7)   

c

1 1 1 1

1 1 1 1
J

1 1 1 1

1 1 1 1

 
 
 =
 
 
 

       (8) 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

r cJ J⊗ =

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (9) 

Equation (10) shows the computed value of second basic sum of squares. 
1[( ) ]T

r cY rc J J Y− ⊗ = (4x4)-1(282.24) = 17.625    (10) 

The computation of the elements of the third basic sum of squares using 

2

1 1

1 1

2
.

1 1 [( ) ]
r c

T
ij r c

i j

r c

i
i j c X Y c I J Y

c

X
− −

= =

= =  
= = ⊗ 

 
∑ ∑

∑∑
is shown in equations (1), (2), (3), (8).and (11).  

 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0

r cI J⊗ =

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (11) 

Equation (12) shows the computed value of the second basic sum of squares. 
 

1[( ) ]T
r cY c I J Y− ⊗ =   (4)-1(70.7446) = 17.686     (12) 
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4.0 Computation of Final Basic Sum of Squares 

The computation of the elements of the final basic sum of squares using 

2

1 1

1 1

2
.

1 1 [( ) ]
c r

T
ij r c

j i

r c

j
i j r X Y r J I Y

r

X
− −

= =

= =  = = ⊗ 
 

∑ ∑
∑∑

is shown in equations (1), (2), (3), (8).and (13).  

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0

r cJ I⊗ =

0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (13) 

Equation (14) shows the computed value of the final basic sum of squares. 
1[( ) ]T

r cY r J I Y− ⊗ = (4)-1(71.0738) = 17.7645     (14) 

The computational result using traditional split plot sum of squares approach gave a value of 27.602 as against 17.7645 
obtained with the proposed Kronecker product.  
 
5.0 Data Analysis for the One-Way ANOVA 

The data matrix in Table 3 was analysed without considering any interaction effect between cutting tool types 
and workpiece materials. The cutting tool type was taken as the treatment and the workpiece materials as replications 
under various cutting tool types. This analysis was meant to determine the existence of variation in the cutting tool type at 
various levels. The Sum of Square of Treatment for the observed data is obtained by the expression shown in equation 

(14), which is the difference between 1[( ) ]T
r cY c I J Y− ⊗ = (4)-1(70.7446) = 17.686, equations (12), and 

1[( ) ]T
r cY rc J J Y− ⊗ = (4x4)-1(282.24) = 17.625, equation (10), and is fully expressed in  

2 2

1 1

1 1 1 1
( )

r c r c

ij ij
i j i j

c X rc X− −

= = = =

   
   
      

−∑ ∑ ∑∑ = 1 1[ ( )] [( ) ( )]T T
r c r cY c I J Y Y rc J J Y− −⊗ − ⊗   

Sum of Square of Treatment = 1[( ) ]r cY c I J Y−′ ⊗ - 1[( ) ]r cY rc J J Y−′ ⊗    (14) 

    = 17.686 - 17.625 = 0.061     
The sum of squares of errors for the observed data is obtained with the expression 

2

1 1

1 1

2
.

1 1 [( ) ]
r c

T
ij r c

i j

r c

i
i j c X Y c I J Y

c

X
− −

= =

= =  
= = ⊗ 

 
∑ ∑

∑∑
. The left hand side (LHS) of the equation is the first basic sum 

of squares as computed and shown in equation (6). The sum of squares for mean (SSmean) is the second basic sum of  
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squares as computed and shown in equation (10). Hence, the expression 2

1 1

r c

ij
r j

X
= =
∑∑ = SSmean + SStreatment + SSresidual  was 

used to compute the error sum of squares as shown in equation (25).  
SSresidual = 17.885-17.625-0.06 = 0.2       (15) 
The degree of freedom for the various sources of variation and the resultant mean squares are tabulated and presented in 
Table 4. 
6.0 Data Analysis for Two-Way Blocked Design ANOVA 

The data matrix in Table 3 was further analysed by considering the workpiece materials as a block and the 
cutting tool types as the treatment. The expression for the sum of square for block effect computation is 

 2

1 1

2 22
1 1 1

1 1 1 1 1 1
( )

r c

ij
i j

r c c r r c

ij ij ij
i j j i i j

X c X r X rc X
= =

− − −

= = = = = =

    
− − +    

       
∑∑ ∑ ∑ ∑ ∑ ∑∑ = [ ]T

r cY G H Y⊗ , . 

SSblock = [ ]r cY G H Y′ ⊗  but Gr = r-1Jr and Hc=Ic-Gc. From equations (4) and (7). 

Therefore, Gr = (4-1) 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 
 
 
 
 
 

 = 

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

 
 
 
 
 
 

. 

Since r=c, then Hc = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 

-

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

 
 
 
 
 
 

=

3 1 1 1
4 4 4 4

31 1 1
4 4 4 4

31 1 1
4 4 4 4

31 1 1
4 4 4 4

− − −

− − −

− − −

− − −

 
 
 
 
 
 

. 

The sum of square for block effect, SSblock = [ ]r cY G H Y′ ⊗ was obtained by computing kronecker product[ ]r cG H⊗ . 

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 1 1
16 16 16

[ ]r cG H

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − −

⊗ =

3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 31 1 1 1 1 1 1
16 16 16 16 16 16 16 16

− − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − 3 31 1 1 1 1
16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16

− − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − 1 1
16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

31 1
16 16 16

− −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − 3 3 31 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 31 1 1 1 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

− − − − − − − − −

− − − − − − − − − − − −

− − − − − − − − − − − −

 
 
 
 
 
 


















 


















    (16) 
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The value for the sum of squares for block effect, shown in equation (17), was obtained using

2

1 1

2 22
1 1 1

1 1 1 1 1 1
( )

r c

ij
i j

r c c r r c

ij ij ij
i j j i i j

X c X r X rc X
= =

− − −

= = = = = =

    
− − +    

       
∑∑ ∑ ∑ ∑ ∑ ∑∑ = [ ]T

r cY G H Y⊗ and the detailed  

 
computation was carried out using MATLAB software..  
 

 SSblock = [ ]r cY G H Y′ ⊗ = 0.1284       (17) 

 
The sum squares of error for the observed data is obtained with the expression:  

shown in SSerror = [( ) ( ) ( ) ( )]T
r c r c r c r cY I I I G G I G G Y⊗ − ⊗ − ⊗ + ⊗  = [ ]T

r cY H H Y⊗  

Kronecker product element of the expression were computed as shown in equation (18). Accordingly, the value for the 
sum of squares of errors was obtained as shown in equation (19) and the detailed computation was carried out using 
MATLAB software.  
 

9 3 3 3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 9 3 3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 9 3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 9 31 1 1 1 1
16 16 16 16 16 16 16 16 16

r cH H

− − − − − −

− − − − − −

− − − − − −

− − − −

⊗ =

3 31 1 1 1
16 16 16 16 16 16 16

3 9 3 3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 9 3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 9 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 31 1 1
16 16 16 16 1

− −

− − − − − −

− − − − − −

− − − − − −

− − 3 3 9 3 31 1 1 1 1 1
6 16 16 16 16 16 16 16 16 16 16 16

3 3 9 3 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 9 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 3 9 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

− − − −

− − − − − −

− − − − − −

− − − − − −

3 3 3 3 3 9 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 9 3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 3 3 9 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3 3 31 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 1

− − − − − −

− − − − − −

− − − − − −

− − − 3 3 9 3
6 16 16 16 16

3 3 3 3 3 3 91 1 1 1 1 1 1 1 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

− − −

− − − − − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (18) 

SSerror = [ ]r cY H H Y′ ⊗ = 0.2974       (19) 

7.0 Kronecker Product Hypothesis Matrix Construction 
The data matrix for the observed experimental data was represented as a 4 x 4 ANOVA by taking the row means of each 
cell under various cutting tool types. In this regard, the original data were analysed for various effects, namely row, 

column and interaction effects. The null hypothesis, 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4

( )
   ( ) 0
µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ
+ + + − + + +

+ + + + − + + + = ,  

for row effect, for this data matrix, can now be written as shown in equation (20).  
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:oH  ( )⊗ 1O 1 µ  

0.89
1.06
0.97
1.00
1.03
1.25
0.99
1.22 =[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]0.96
1.24
0.96
0.93
0.97
1.25
1.15
0.93

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0.89 1.06 0.97 1.00 (1.03 1.25 0.99 1.22) 0.96 1.24 0.96 0.93 (0.97 1.25 1.15 0.93) 3.54= + + + − + + + + + + + − + + + =
           (20) 

The null hypothesis, 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4   0
µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ
= − + − + − + −

+ − + − + − + − = ,  

for column effect for this data matrix, can now be written as shown in equation (30). 
 

:oH  

( )⊗ 11 O µ

0.89
1.06
0.97
1.00
1.03
1.25
0.99
1.22 =[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]0.96
1.24
0.96
0.93
0.97
1.25
1.15
0.93

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 0.89-1.06+0.97-1.00 1.03-1.25+0.99 1.22 0.96-1.24+0.96-0.93 0.97-1.25+1.15-0.93 0.96= + − + + = −
            (21) 
The null hypothesis for the interaction effect is that there are no differential effect and is analysed in what follows. 

 :o A BH ⊗ =O O 0         

OA = [a1. –a2.  a3. –a4.] 
OB = [b.1 -b.2 b. 3 -b. 4] 
Where [a1. a2. a3. a4.] and [b.1 -b.2 b. 3 -b. 4] are the respective row and column sums. 

⊗ BAO O = [(0.98)(0.97 -1.20 1.02 -1.02) (-1.12)(0.97 -1.20 1.02 -1.02) (2.1)(0.97 -1.20 1.02 -1.02) (-1.08)(0.97 -1.2 

1.02 -1.02)] 
                 = [0.9506-1.176+0.9996-0.9996-1.0864+1.344-1.1424+1.1424+2.037-2.52+2.142-2.142-1.0476+1.296-

1.1016+1.1016] 
                 = -0.4508         (22) 
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8.0 Results 
The results of data computations carried out are presented hereunder. 
The following hypotheses were employed.  

(i) Nature of Workpiece Material 

(a) (0)
workpieceH : all iα  =0; the four types of workpiece specimens, (aluminum, copper, mild steel 

and stainless steel) employed showed no significant differential effect under the cutting 
conditions adopted. 

(b) (1)
workpieceH : all iα  =0; surface roughness observed on the workpiece varied according to the 

strength of material used. 
(ii)  Tool Type 

(a) (0)
tooltypeH : all jβ  =0; the four tool specimens (HSS, ceramic, carbide and cobalt) employed 

in the experiment impact similar surface texture under the same cutting conditions. 

(b) (1)
tooltypeH : all jβ  =0; the four tool specimens exhibit different surface roughness 

characteristics under the experimental conditions observed. 
 
Results for One-Way ANOVA 
The sums of squares, for the various sources of variation, are tabulated as in Table 4. The mean square and the degree of 
freedom and number of independent variables, were also computed. The decisions on the null hypothesis for the various 
sources of variations were also established. 
Table 4: One-Way ANOVA Table for Surface Roughness of Machined Workpiece 

Sources of 
Variation 

Sums of 
Squares 
(SS) 

Degrees 
of 
Freedom 
(DoF) 

Mean of 
Squares 

= SS
DoF  

Fcal = 
variation

error

MS
MS  

Ftab ( at 
0.05α = ) 

Decision Ftab ( at 
0.01α = ) 

Decision 

Treatment 
(Cutting 
tool Types) 

0.061 (J-1) = 4-
1 = 3 

0.02033 0.91494 3.86 Fcal < Ftab 
Accept H0 

6.99 Fcal < Ftab 
Accept H0 

Error 0.2 (I-1)(J-
1)=(4-
1)(4-1) = 
9 

0.02222      

 
Results for Two-Way Blocked Design ANOVA 
The sums of squares, for the various sources of variation are tabulated as in Table 5. The mean sum of squares and the 
degree of freedom and number of independent variables, were also computed. Moreover, the null hypothesis for the 
various sources of variations was determined. 

Table 5: Two-Way ANOVA Table for Surface Roughness of Machined Workpiece 
Sources of 
Variation 

Sums of 
Squares 
(SS) 

Degrees of 
Freedom 
(DoF) 

Mean 
of 
Squares 

= SS
DoF  

Fcal = 
variation

error

MS
MS  

Ftab ( at 
0.05α = ) 

Decision Ftab ( at 
0.01α = ) 

Decision 

Treatment 
(Cutting tool 
Types) 

0.061 (J-1) = 4-1 
= 3 

0.02033 0.0684 3.86 Fcal < Ftab 
Accept 
H0 

6.99 Fcal < Ftab 
Accept 
H0 

Block 
(Workpiece 
Materials) 

0.1284 (I-1) = 4-1 
= 3 

0.0428 0.1439 3.86 Fcal < Ftab 
Accept 
H0 

6.99 Fcal < Ftab 
Accept 
H0 

Error 0.2 (I-1)(J-
1)=(4-1)(4-
1) = 9 

0.2974      

 
Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 399 – 412           



 

 Kronecker Product Analytical Approach to ANOVA

By this approach, both null hypotheses were accepted at 0.01 and 
is that workpiece material and tool type contribute less in the determination of the final texture of machined workpiece in 
relation to other factors. 

However, using Kronecker Product Hypothesis Matrix, 
rejected. The approach is superior to the Yates algorithm because of its use of cell means and omnibus matrices that is 
more robust. The method is therefore confirmatory and more reliable. 

Our final conclusion therefore is that workpiece material as well as tool type play a significant role in the 
determination of the surface texture of machined workpiece. These results collaborate with literature results 

9.0 Final Model Developed 
The numerical value for the model was obtained by substituting the values of overall mean (

cutting tool type, sum of squares for the workpiece cutting tool type interaction and the error sum of squares.
From equations (14), (17), (19) an

expressed follows: 
 

ijklmnX̂  = 1.05 + 0.1284+ 0.061 + 0.2974            = 1.5368

10.0 Residual Analysis and Model Checking
The residual associated with the model developed is obtained using, Residual = 

values are shown in table 6. 
    

Table 6

 Workpiece Materials

Aluminium, i=1

Copper, i=2

Mild Steel, i =3

Stainless Steel, i=4

The normality plot of the residuals from the surface roughness experiment is shown in Figure 2. Figures 3 and 4 present 

the residual plotted against the factor level of workpiece material and fitted value of  

Journal of the Nigerian Association of Mathematical Physics Volume 

410 

Kronecker Product Analytical Approach to ANOVA …  Igboanugo and Onifade

By this approach, both null hypotheses were accepted at 0.01 and 0.05 levels of significance respectively. The import 
is that workpiece material and tool type contribute less in the determination of the final texture of machined workpiece in 

However, using Kronecker Product Hypothesis Matrix, the same null hypotheses, including their interaction were 
rejected. The approach is superior to the Yates algorithm because of its use of cell means and omnibus matrices that is 
more robust. The method is therefore confirmatory and more reliable.  

al conclusion therefore is that workpiece material as well as tool type play a significant role in the 
determination of the surface texture of machined workpiece. These results collaborate with literature results 

 
numerical value for the model was obtained by substituting the values of overall mean (

cutting tool type, sum of squares for the workpiece cutting tool type interaction and the error sum of squares.
From equations (14), (17), (19) and the computed value for the overall mean, the numerical value for the model is 

= 1.05 + 0.1284+ 0.061 + 0.2974            = 1.5368µm    (23) 

Residual Analysis and Model Checking 
ith the model developed is obtained using, Residual = ˆ

ijklmn ijklmnX X−

Table 6: Residuals Associated with the Model 

Workpiece Materials Residuals 

Aluminium, i=1 -0.64 -0.47 -0.57 -0.54 

Copper, i=2 -0.50 -0.29 -0.55 -0.32 

Mild Steel, i =3 -0.57 -0.30 -0.58 -0.61 

Stainless Steel, i=4 -0.57 -0.29 -0.38 -17.00 

The normality plot of the residuals from the surface roughness experiment is shown in Figure 2. Figures 3 and 4 present 

the residual plotted against the factor level of workpiece material and fitted value of  ˆ ijklmnX .  

Fig. 2: Normality plot of the Residuals 
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the same null hypotheses, including their interaction were 
rejected. The approach is superior to the Yates algorithm because of its use of cell means and omnibus matrices that is 

al conclusion therefore is that workpiece material as well as tool type play a significant role in the 
determination of the surface texture of machined workpiece. These results collaborate with literature results  and  

numerical value for the model was obtained by substituting the values of overall mean (µ), sum of squares for 
cutting tool type, sum of squares for the workpiece cutting tool type interaction and the error sum of squares. 

d the computed value for the overall mean, the numerical value for the model is 

ˆ
ijklmn ijklmnX X , and the numerical 

The normality plot of the residuals from the surface roughness experiment is shown in Figure 2. Figures 3 and 4 present 
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Fig. 3: Plot of Residual versus Workpiece Material Factor Level

These plots do not reveal any model inadequacy or unusual problem with the assumption.
 
11.0 Discussion 

The kronecker product analytical tool employed in this research project has facilitated the decomposition of sources 
of variance into their contributing components without performing the rigorous Fishers
involves computation of sum of squares of these various sources of variation. The cutting tool type was selected as one of 
the factors that influence the workpiece materials surface finish. The model was able to state the particular combination of 
these factors that gave rise to certain de
computational aid and this eliminated the rigorous steps involved in matrix algebra, which is one of the major 
mathematical theories applied to this research work. Furthermore, it was clai
analytical technique proposed is a new paradigm that obviates the use of complex computations associated with the Yates 
Algorithm. The research outcomes have justified this claim. Thus the overall aim of the rese
achieved. 
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Plot of Residual versus Workpiece Material Factor Level 

Fig. 4: Plot of Model against Residuals 
 

These plots do not reveal any model inadequacy or unusual problem with the assumption. 

product analytical tool employed in this research project has facilitated the decomposition of sources 
of variance into their contributing components without performing the rigorous Fishers-Yates algorithm. The algorithm 

ares of these various sources of variation. The cutting tool type was selected as one of 
the factors that influence the workpiece materials surface finish. The model was able to state the particular combination of 
these factors that gave rise to certain degree of surface roughness of 1.536µm. MATLAB software was used as a 
computational aid and this eliminated the rigorous steps involved in matrix algebra, which is one of the major 
mathematical theories applied to this research work. Furthermore, it was claimed at the beginning that Kronecker product 
analytical technique proposed is a new paradigm that obviates the use of complex computations associated with the Yates 
Algorithm. The research outcomes have justified this claim. Thus the overall aim of the research study has been fruitfully 
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12.0 Conclusion 
The application of right Kronecker product to fractional experimental design of surface roughness data has been 
established in this study. This analytical method explored can be used to develop a statistical software package that will 
be helpful in the computation of sums of square of observations as well as take decision on the null hypothesis without 
comparing the values in Fisher’s table with the computed values. 
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