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Abstract

In modelling manpower systems, most authors rely iarkov-based theoretic
methodology as an analytic tool to unify the statafsthe system with the axiomatic
foundation that there is a one-stage dependencew#nts. In this study, Markovian
manpower models are surveyed. Specific areas aghlighted as future research
directions.
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1.0 Introduction
The descriptive and prescriptive objectives of ustdding, predicting, and controlling a manpowestem require
the use of transition models. An operational knalgke in this area calls for Markov chain theory. Arkbv chain is a

discrete-state Markov proceéé(t|t (T}, where

Prob{X,,, =s/|X, =5, ....X, =§} = Prob{X,,, =s,[X, =s}, t= 01,2, ... )

The Markov chain described by equation (1) is caklle non-homogeneous discrete-time Markov chain If1].
Prob{X,,, = J-|Xt =5} = p;, then the Markov chain is said to be homogeneaudarkov chain with at least one
absorbing state is referred to as an absorbing d¥ackain. LetA denote anN x N transition matrix of an absorbing
Markov chain withI' absorbing states. Then the nonabsorbing (transsates ismm= N —r . Let W be anmXxr

transition matrix from nonabsorbing to absorbirages; letP be anm x m transition matrix among the transient states;
let | be anr Xr identity matrix; and letD be anr x m matrix whose entries are all zero. Then matfix can be

P : w

represented in the canonical form As=|--- --- --- |, where the prime ilW denotes transposition. By the matrix

*

P' 1w,
multiplication of a partitioned matrix, we havegeneral thal‘At Sl AL
o : |
where w; = wW'+Pw'+P?w'+ --- +P7W' if t - o, lim P' =0 since||P|| <1 as P is sub-stochastic so
that limw; = w'+Pw'+P?w'+ --- = (I =P)™"W". The matrix (I —=P)™ is called the fundamental matrix of the

tooo

absorbing Markov chain and i§, | )th entry is the expected number of times the proiseissa transient state
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before entering an absorbing staﬁe Ibe [1] stated that a stochastic procé%(t)|t >0} is a continuous-time Markov

chain if, for all S,t = 0 and non-negative integets | ,K,
Prob{X(t+s)= j|X(S) =i,X(u) =k} = Prob{X(t+s) = j|X(S) =i}, 2)

i.e. in a continuous-time Markov chain the conditibprobability of the future state at tiniet S given the present state
at S and all past states depends only on the preseate sand is independent of the past. If

Prob{X(t+s)= j|X(S) =i} is independent org, then the procesgX (t)|t >0} is said to be time-homogeneous.

Further details on Markov chain theory can be foum@ — 4]. For a consolidated account of earlykvon inference for
finite Markov chains from counts of transitionsfere@nce should be made to [5] and [6].

Markov models have been applied to diverse subgtatbpics. Markov models have been used as a ciene
framework for analyzing the structural mechanisnmictv underlie social change and for extrapolatinifis in the state
distribution of a population [7 — 9]. Berman anddasky [10] used Markov decision approach to resthe problem of
finding the optimal switching decisions of crosaitied workers between the front and back roomspséem. Bartolucci
et al. [11] applied Markov model to evaluate thefgenance of nursing homes. Gupta et al. [12] dgyet a Markov
model for the comparative evaluation of alternativaintenance strategies in the coal handling unét thermal power
plant with two states, namely: working and failéakss. Yu et al. [13] dealt with a learning problehwhich the decision
maker interacts with a standard Markov decisiorc@ss where the reward functions vary arbitrarilgraime; and Even-
Dar et al. [14] concentrated on a Markov decisioncpss in which the reward function is allowed bamge after each
time step. Litvak and Ejov [15] considered the Hémnian cycle problem embedded in a Markov decigioocess
corresponding to a given graph. Leder et al. [1ppliad an approximation technique for a deviatioatnm of
continuous-time Markov processes to queues. Hahat. [17] studied the zero-sum Markov games. ghag] studied
partially observable Markov decision processes filtite state, action, observable sets, and dissaurewards. Lim and
Desai [19] proposed a Markov decision process amprdor a route selection problem which minimizks tost of
undesirable events. Nielsen et al. [20] considethods for embedding a state space model into a dadecision
process with particular reference to agriculture.

2.0 Estimation of transition probabilities of Markov chains

Anderson and Goodman [5] proposed the maximumilikeld method for estimating the transition prokitibg of a
Markov chain. Billingsley [21] maintained that istamating the transition probabilities of a Markoivain, there arises a
natural problem of testing whether the transitionbabilities have a specified forerij (6) say, where@ is an

unknown parameter vector which is estimated fromr ghmple. Billingsley [21] therefore stated thathié process is

governed by the transition matri{ p;(6)}, the log-likelihood of the observation{x1 A ,Xn+1} is
! f;1ogp; (6); and if the parameter is a vectGr= (51 e ,Hr) with ' real components, then a solutiéhis
. . . . f;  0p; (6) .
obtained by solving the system of the maximum idabd equatlonsz.. —_— =0, u=1,...,r.Since
"'p. (@) 06
plj u

Anderson and Goodman [5] and Billingsley [21] prepo the maximum likelihood method for estimating transition
probabilities of a Markov chain, there have beerhfer developments in this aspect. Raghavendra ¢2finated the
transition probabilities of a Markov manpower modsing a bivariate probability distribution, whichnsist of seniority
and performance rating, for framing promotionaligiek. The limitation of the method is that theccddted values of the
transition probabilities cannot be guaranteed tanbthe range(O, 1). Kulperger and Prakasa Rao [23] proposed the
bootstrap technique as a method for obtaining ameation to the sampling distributions from whidietestimates of
transition probabilities can be calculated. Onethef drawbacks in the application of the bootstrghhique is the
computational agony in obtaining a large bootstraplicate from which such sampling distributionsn che
approximated. More so, Davis et al. [24] presematedethod in which the transition probabilities lné tMarkov process is
estimated from aggregate data using the logarithfrpsirtial odds. Partial odds refer to the quotithe probability of a
transition to another state to the probability oftransition. Authors such as [25 — 27], have psegloseveral statistics for
testing the assumption of homogeneity about thesitian probabilities. Sales [26] posited that #tatistic of goodness
of fit given as:

z(observed val ues —expect ed val ues)? @)
expect ed val ues ’
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is not applicable to manpower systems becauseltbereed values are not independent. Zanakis andtN28] posited
that the entire transition probability matrix isnstant over time if

n (t)[pij (t) - pij]2

i=1j=1t=1 p.
ij

< YZ[s(m-1)(T -1, @)

where S is the number of non-absorbing staté8, is the total number of state$, is the number of time periods,

N, (t) is the number of persons in stateluring periodt ; p;; (t) is the estimated transition probability from stateo

N

j during periodt; p; is the pooled estimate opj; (t); and )(f,[s(m—l)(T —1)] is the chi-square value a¥
percentile and S(m—1)(T —1)] degrees of freedom.

3.0 Manpower modelling based on Markov processes

Bartholomew et al. [29] stipulated that manpoweamping is an attempt to match the supply of peujitle the jobs
available for them. Anthony and Wilson [30] desedlmanpower modelling as taking a group of peojle are similar
in some way (i.e. all working in the same organaatall enrolled in the same school, etc.) anddsutle them into
homogeneous groupings (e.g. by age, level, etcthabby using historical data and intuition on@ examine future
possibilities and the effects of organizationaligies. The flow of people in manpower systems is subdiyideo
recruitment stream, the transition between statesimastage from the system. Setlhare [31] studiedptimization and
estimation of stochastic model of manpower systevith particular reference to Markov processes. HiopK32]
discussed the use of Markov processes in staffnpignand evaluation under certain organizationdicjgs. Several
hierarchical models based on Markov chain theoryehbeen applied to manpower systems [33 — 38]. Snitd
Bartholomew [39] wrote a comprehensive chroniclasn@anpower planning in the United Kingdom. In therkvthey
credited the use of Markov chain theory to modabed systems of known total size to the paperljopublished by A.
Young and G. Almond in 1961. Bartholomew et al.][@Bcussed the use of Markov chains as a convefrimework
for analyzing the state-transitions in graded systeSome authors [40, 41] concentrated on the rd@tistic aspects of
Markov chains and therefore coined the term ‘frawi-flow models’ for Markov-based transition maaldPurkiss [42]
explored papers on the practical relevance of Magkomanpower models (MMMs), while Edwards [43]deed on the
assumptions on MMMs and its applications. Sincedinevey by Purkiss [42] and Edwards [43], over st¥en years
have elapsed. In these intervening years, MMMs leen firmly established in literature, especiallyhe evaluation of
the educational process [9, 44, 45].

3.1 Transition models for manpower systems based dnarkov chains
Social processes such as educational and manpgysteEns are modelled either as a closed system apan

system using Markov chain theory [46 — 50]. In@seld system with a set of statSs= {1, 2,..., k}, where no attrition

is allowed, the transition probability matrix PDsz is a stochastic matrix given as
k 2

P:{(pij):Z:pIj =1 p, 20, i,jDS}, where R ¥ is the k2 —dimensional Euclidean space anp; is the
j=L

transition probability from staté to statej . The distribution of the closed system at the tiexé point is computed as
[51]:

n(t+1)=n(t)P, (5)
where n(t) = (nl (t), n, (t), R (t)) is a point in thek —dimensional Euclidean space wimi\(t) being the
number of individuals in state[] S in periodt, and ﬁ(t +1) is the expected manpower structure in petiodl .

On the other hand, there is a two-way flow betwdensystem and the outside world in an open systdms, the

k
matrix P is sub-stochastic, i.el?:{( pij):z P, <Lp; 201, ] DS}, where the shortfall in the sum of transition
j=1
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probabilities is created by wastage in the syst@m.transition model for the open system is modedie [52]:

n(t +1)=n(t)P + R@)r, 6)

where R(t) is the total recruitment at periot, and I and W denote the probability vectors of recruits and
wastage, respectively. By assuming that recruitrisedbne to achieve desired growt), and to replace leavers [53], we
have

n(t+1)=n{t)Q+onfthe'r. ™
where Q = (P +wW' r) and€' is a column vector of ones conformable with mafg@x The matrixQ is stochastic

since Qe'= €'. In this study, the prime notatiofi ) denotes transposition. The use of Markov-basedefaddr open

manpower systems has received renewed intereateaans to a better quantitative planning [54].

Looking at the present state of literature, wethaé Markovian manpower models (MMMSs) are eithenfolated in
discrete-time [55 — 59] or in continuous-time [663]. Some authors in dealing with manpower systasssimed that the
individual transition between states take placeating to a homogeneous Markov chain [26, 53], &bihers [64 — 66]
assumed a non-homogeneous Markov model for manpsyséems. The use of the theory of hon-homogenktaukov
systems (NHMS) has flourished in literature on namgr systems [67 — 69]. Vassiliou and Tsaklidis] [@¥amined the

cyclic behaviour of NHMS. In such a system withipérd , the transition probabilities satisfy the equasion

P(nd+r) =P(r), Py(nd+r)=Py(r), and P,(nd+r) =P ,(r), so that Q(nd+r)=Q(r),
n=2,2,---,andr = 0,1,2,---,d - 1.

Tsantas and Vassiliou [69] introduced the conceptaonon-homogeneous Markov system in a stochastic
environment. In the work, a sequence of stochausz‘eitrices{C(t)}fil which is the outcome of the choice of a strategy
under various pressures in the environment wasayagl The sequence of stochastic matrices is dessitice there is

no specific transition matrix in a stochastic eamiment. The sequenc%C(t)}:il is called the compromised non-

homogeneous Markov chain. The compromised non-hememus Markov chain is applicable when in the evi
sequence of a system a repetition of a particulanber of matrices is observed without a certaimiistic pattern.
Vassiliou and Georgiou [70] analyzed the asympadijicattainable structures of the embedded non-lgemeous

Markov chain defined by the sequen&{@(t)}:io, where Q(t) = P(t) + P, (t)Py(t) . The matrix P(t) is a
transition probability matrix at timé; P, ,, (t) is alxk vector of loss probabilities at time and Py (t) is alxk
vector of input probabilities at timé. Later on, Tsaklidis [71] studied the evolution aitainable structures of a
homogeneous Markov system (HMS) with fixed sizegwehthe transition matrix) = P + Pn+1P(') was reffered to as
the imbedded Markov chain of the HMS. Held,is a transition probability matrixt,,; denotes amx1 loss vector;

and P, is annx1 recruitment probability vector. The block struetiof matricesQ(t) and Q respectively in [70]
and [71] is analogous to the Young/Almond-type Markhain formulation [46].

3.2  Semi-Markov models

The basic Markov transition model contains somealfumental drawbacks. These includer alia, the assumption
that transitions to another grade or leaving o@tua constant rate and that the conditional prdibalbif moving having
survived to timet does not depend oh. Semi-Markov models account for variations in iegvprobability with
duration and destination. The semi-Markov modeteas the simple Markov transition model to a fomtioh which
combines a transition matrix of probabilities of vimy between grades with a conditional distributafnduration in a
grade before transition to each destination. Mehim&@2] had proved the asymptotic relation for th@npower structure
of a semi-Markov manpower system with Poisson ingassiliou and Papadopoulou [73] studied the ra#iability of
expected duration structure in the state of a syaising the non-homogeneous semi-Markov system. |&&eC[74]
studied a semi-Markov model for a multigrade pofotawith Poisson recruitment. The basic problemoemtered in
the estimation of the parameters of semi-Markov el®avas identified by McClean [75] as incompleteniesthe data.
The reason for this is that the available dataeattger left truncated or right censored. McCleaB][described left

truncated and right censored data as follow: suposindividual is first observed in a particultats Z, and last

observed in the stat€ .. Then the complete history of the individual maydescribed by
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H ={T0 Lo T2y s g T ,Zm}, where for left truncated datd,, >0 and represents the time already

spent in the system when data collection commeredisne T, is subsequently spent i, before transfer toZ,. For

right censored datZ . = Kk +1 and the data are right censoredlaf.

3.3 Hidden Markov models
A hidden Markov model (HMM) is a stochastic procegsose evolution is governed by an underlying diter

Markov process (Markov chain) with a finite numinérstatess; 1S, i = 1,...,K, which are not directly observable.
Baum and Petrie [6] introduced the concept of HM&4sa tool for probabilistic sequence modelling. $ites and
Toscani [76] posited that a discrete HMM is chaggized by five elements, namely: a set of st&els]S, i =1,..., N

; a set of observable symbo®, JM, m=1,...,k; a probability distribution for the initial staté?(q1 =S,),
s US, i=1,...,N; a set of state transition probabilities that tenrepresented by a transition mati, with

a; =Pr@,, =s; |qt =s) and Zaij =1 for each i =1,...,N; and a set of probability density functior3
j

whose element$, = Pr(k|qt =S ) give the probability of observing in stag the emission of the symbd LJM .
Messina and Toscani [76] therefore stated that avHMfully specified once we know the initial statistribution 77(8I )

, 1 =1,...,N, the state transition probabilities iA and the output probabiliteB =[B, ,..., By] . Mitrophanov et

al. [77] derived a tight perturbation bound for HMNi.e. a bound which cannot be improved by a emdactor) and
proved that the distributions of a HMM show a weaaltependence on the transition probabilities tharthe emission
probabilities. The statistical implication of theeaker dependence of the distributions of HMM g e transition
probabilities may be more difficult to estimatetiBstion of parameters in HMMs has been theordtiadiscussed in
[78]. A well-established method for HMM parametstimation which is the expectation-maximization (Edgorithm

had earlier been developed [6]. Bartolucci et &ll][applied the EM algorithm for HMM to obtain thmaximum

likelihood estimates of the latent Markov model g¥thivas used to evaluate nursing homes. HMMs hage heed to
analyze alcoholism treatment [79] and to assesmubsomal alteration [80]. However, in the availdiikrature, none of
the authors dealt with the application of HMMs tanpower systems.

4.0 Some perturbing issues in MMMs and their remedy

The primary objective in manpower planning is tedict future stocks. In doing this, there are stiméations. The
limitations include: incorrectness or inapplicdtyiliof the model, estimation of parameters, randariation in the
number of losses and transfers, and random varitithe input. Bartholomew [27] suggested thedfelhg methods as
a means of addressing these limitations as folldiesuse of cross-validation to minimize error duéncorrectness, the
use of sensitivity analysis to see how much praatistare affected by changes in the transition q@odites, and the
Bayesian treatment and the frequentist approaaivéstigate estimation errors.

Another paramount issue in modelling manpower systis how to account for the presence of heteraerihe
sources of heterogeneity in manpower systems iaclobservable sources such as length of servicetatrstatus, sex,
level of employment, time factor; and latent sosrsach as individual traits and environmental fieectt/gwuowo and
McClean [81] reviewed several suggestions maderbyigus authors on ways of tackling heterogeneitynanpower
planning, and thereafter proposed some technigidshwnclude semi-Markov model, proportional hazarddel, and
non-time-homogeneous model, to deal with heterageimremanpower systems.

The implementation of Markovian manpower models (M8} is characterized by computational complexitiest.
this reason, several software packages such as KPRODSPECT, MICROPROSPECT, CAMPLAN, and MANSIM
[29, 39] and FORMASY [84] have been developed wilifate the use of MMMs. These packages are tadldowards
specialized problems and thus cannot be easilyflraddiAnthony and Wilson [30] employed the spreagdtsystems in
analyzing manpower systems; while in Ekhosuehi @sdgiede [82] the Matlab package was used as autatignal
tool in analyzing manpower systems. The Matlab pgekhas several computational and graphic visuzhradges
arising from its interactive interface and indepemichblotting devices.

Skulj et al. [85] applied Markov chain model to thenpower structure of Slovenian Army. In this wotte
problem of achieving the desired manpower strucamaéld not be resolved. In view of this, Skulj ét suggest the
development of a semi-Markov model in which the afi¢he units in the segments is considered inctieulations of
transition probabilities as a way of improving de tMarkov chain model.
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5.0 The limiting relation of MMMs

Limiting behaviour of a manpower system may retateither expected numbers in the grade or théivelaumbers
and may be formulated in discrete or continuoutikassiliou [66] showed the conditions under whaclimiting or a
relative limiting structure exists for certain diste time manpower systems. The model used in {§6he time-
dependent Markov model proposed by Young and Masegi64]. Mehlmann [58] and Vassiliou [86] had éarlstudied
the limiting behaviour of a manpower system withisBon recruitment and observed that the membetkeinvarious
grades are asymptotically mutually independent d@oisVassiliou [86] found that the asymptotic aggribution of a
manpower system when the transition matrix is aeggnstochastic matrix (not necessarily propemdsin general a
single distribution but a repeating cycle of distitions which depends not only on the transitiasbpbilities but also on

the initial distribution. Research has also beertmdetermine ‘how fast’ the limiting relatiohm P'=n converge,
to o

where P ={ pij} and n=(7Tl,...,7Tk). For instance, Ledermann [51] applied the mety Pt—n):

max(‘pij —ﬂj‘;lsi,j < k) and defined the speed of Convergence,tz@at - L)S ca't“! | wherecC is a

k
constant that does not dependforand @ = maxZ| p, — p1r| .
2<rsk s

60 The problem of control of manpower systems

Control problems have two aspects, namely: attdihabnd maintainability. Attainability is conceed with whether
or not a desirable structure can be reached frogiven structure under the constraints on the vigbwhile
maintainability is concerned with how to remainthé desirable structure once it has been reached.tfieory of
maintainability aims to show what kinds of struetwwan be maintained under various assumptions @mgiion and
recruitment. In practice, the attainability problesannot be completely solved because not all tiansi can be
controlled, while those that can be controlled rroeallowed to be set entirely arbitrarily. In tbase of maintainability,
the aim is to find a transition matrix within aroalable set of matrices whose stationary distrinutis the required
distribution. The control of asymptotic variabiliof expectations, variances and covariances in ekd¥achain model
has become a surge of interest in manpower sysiangus works [68, 70, 87] provide significant tdioutions in this
area. Attainable and maintainable structures inkighamanpower systems under recruitment control abon literature.
Bartholomew et al. [29] concentrated on simplehanitic tests of whether or not a given structune loa maintained.
Davies [48] considered a structure that can be taiaied under a partially-stochastic model in whidstage flow is the
only stochastic variable, while promotion is detiristic. Davies [48] noted that, although an idis&ructure N can be

calculated from an attainable structuf®@® , there is no guarantee that all of the entries nrf¥ P for
P= {p,j}, |P| # 0, will be non-negative. Davies [48] therefore imtused the concept of & -step path in attaining a

structure N(T), which is the path with the maximum probabilityeovall possible attainabld -step paths. By this

concept, Davies [88] stated and proved severalrémes Later Kalamatianou [89] analyzed attainabig @aintainable
structures in Markov manpower systems with pressuggades. In such a system, the Markov assunptidrconstant
transition rates do not hold. Tsantas and Vassji8{iintroduced the concept of a non-homogeneoagkbV system in a
stochastic environment (S-NHMS). Afterwards, Tsansd Georgiou [90] extended the concept of S-NHW$he

partial maintainability and control of a hierardiisystem. Haigh [91] studied the stability of mawer systems. In [91],

the case of a strictly maintainable structuté’ <X, was considered, wher& is a vector representing the
organizational structure and ={ pij} is the transition probability matrix. VassiliouZRanalyzed the stability of a non-

homogeneous Markov chain model in manpower systmdsstated several theorems in order to achievdistan the
Young/Vassiliou-type model [64].

7.0 Conclusion

The use of MMMs as a tool for evaluating manpowgstems has been appraised in this paper. The major
accomplishments of the study are that a large nuwidéerature on manpower planning have beeneyad and, arising
thereof, are challenges which are potential futlirections of research. Nonetheless, a criticablgnm encountered in
the use of MMMs is that the basic data requiremeatsstimate the transition parameters are oftatisstally
incomplete. For instance, semi-Markov models wiriefuire data such as: stock data on the numbetafifia each
grade at the beginning and end of the year, ariddhtes of appointment to the grade, as well & da the movers and
leavers for each grade during the year, togethttr their dates of appointment to the grade, mayatidie available. For
this reason, it is necessary to have a comprehedsitabase in every organisation. All the sameetar: some gaps to
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be filled in the application of MMMs. As earlier ipted out in [29], it is necessary to develop dethdynamic models to
extrapolate shifts in the structure of manpowetesys. Even so, the application of hidden Markov el®@dHMMs) to
manpower systems so as to tackle the problem gmshdterogeneity in the system is yet to be ackieve
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