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Abstract

The effects of the variation of atomic spacing ratiof a one dimensional
quasicrystal material are investigated. The workvaives the use of the solid state
simulation code, Laue written by Silsbee and DrageiVe are able to observe the
general features of the diffraction pattern by a gsicrystal. In addition, it has been
found that each golden mean produces a unique difftion pattern and that the lower
the golden mean the better the diffraction patterasembles that of a periodic chain.
Also the intensity of the central peak was found ttecrease as the golden mean
increases. However the value of golden mean haseffect on the spacing between the
Bragg planes.
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1.0 Introduction

The discovery of quasicrystal by Shechtman et atentban three decades ago [1] signaled the begjnoina
remarkable scientific revolution [2], in which sonté the most basic notions of condensed matter iphyksave
undergone a thorough re-examination. Today, thensei of quasicrystals, with its growing numbereodtiooks, is in its
adolescence. Old paradigms are being carefullystoamed into new ones [3]; definitions are beingrulred [4]; space-
group theory has been generalized to quasicryssaig two alternative approaches [5], and evenneldd to treat novel
long-range order possessing colour [6] or magrsstiometry [7].

In a quasicrystal, the local arrangements of ataradixed, but each cell has a different configorabf cells nearby.
Although the structures are strikingly similar teetquasiperiodic tiling invented by the mathematiciRoger Penrose
and which Martin Gardner popularized in a 1977 Mathtical Games column in Scientific American, theees little in
the crystallographic field to presage the experitaelreakthrough[8]. Shechtman et al themselvesndidimmediately
recognize the quasiperiodic structure in his sapgid was at first mystified by the diffraction fean[9].

Diffraction is the primary technique for examinirige structures of solid materials, and the consecpieof
aperiodicity on diffraction patterns provides a lidrage and an opportunity to gain a deeper undwmisig of both
diffraction and of quasicrystal structure [10-1BJost common procedure for analyzing diffraction sww&ment from
crystalline solid were originally developed fromethssumption of a periodic structure unit. Therdidin of a crystal
included the requirement of periodicity until 1992]. Aperiodicity and traditionally forbidden rotanal symmetries
introduce features in diffraction patterns that makerpretation by the traditional means more dem@Simulations can
provide a means for building intuition of the effed quasicrystalline order on diffraction pattermighout resorting to a
complicated analysis.

One of the most unexpected aspects of diffractimmf quasicrystals is that they produce sharp, asdrate
diffraction peaks [15]. A disruption of periodicibften leads to a (loss of definition) broadenifigeaks, and increase in
background intensity in the diffraction pattern.\w&ver, aperiodicity by itself does not cause a teméng of diffraction
peaks. This can be demonstrated in one dimensidadiyng at the Fourier transform of the well-orelérbut aperiodic
Fibonacci array of one dimensional sequence ofrts8) and ‘long’ (L) atom generated by specifidas [16]. In the
limit of an infinite number of atoms, the ratio tife nhumber of L segment to S segment is given byirttational

numbet = (1;‘/3, known as golden mean [17]. A Fourier transfornthig array does not show the broad peaks that are
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normally associated with disordered structures.ikgnfransform from periodic arrays, the transfomoni a Fibonacci
array forms a dense set of sharp peaks. havingrdiff intensities. The positions of the peaks elaed to each other by
power of golden mean [17].

The history of quasicrystal begins with the 198pq1g1] “Metallic phase with long-range orientatiorder and no
translation symmetry” where D. shechtman et al destrated a clear diffraction pattern with a fivef@dymmetry. The
pattern was recorded from an Al-Mn alloy which Heeen rapidly cooled after melting. Ishimasa et1#l] [reported
twelve fold symmetry in Ni-Cr particles. Over theays, hundreds of quasicrystals with various coftipas and
different symmetries have been discovered. The dusisicrystalline materials were thermodynamicaiigtable-when
heated. The first of many stable quasicrystals wié&eovered making it possible to produce largegasnfor study and
opening the door to potential applications [3].

N. Ferralis, et al [20] investigate the diffractimom One- and two dimensional quasicrystallinetiggs” on one
dimensional quasicrystal using two different apples (laser diffraction and calculated diffractiorethod using
Fibonacci series). The research suggested that, déf$raction allows an inductive approach for argtanding complex
aperiodic structure, and can provide educators waithinnovative tool for introducing and extendirg ttraditional
concept of diffraction.

In 1985, Levine [21] conducted a theoretical workthe diffraction pattern for an ideal model of sgjlegttice in
which identical atoms are placed at each pointhef fattice, and obtained results that are in agesé¢nwith the
observation earlier reported by Shechtmen, et]al [1

To generate a quasicrystal patterns, so callecegtion methods have been developed[22-24]. Projectiethods
are mathematical constructs that projects sectidrisypercubic lattice onto lower dimensional spacise first such
projection was given by de Bruijn [25], where hewkd that the vertices of the two-dimensional psangattern of darts
and kites can be generated by hypercubic lattimearone-dimensional.

In this work, the effects of varying the atomic sipg ratio(golden mean) are investigated on onesdsional
quasicrystal material using the code ‘Laue’ writtgnSilsbee and Drager [18]. Laue is based on toggtion technique,
however, unlike traditional projection work, in whithe emphasis is entirely on the diffraction gt the code can
provide additional data that can be used to chariaetthe quasicrystal.

2.0 Diffraction Pattern from Quasicrystal
The diffraction patterns of the quasicrystal conefsa set of Bragg peaks that densely fill recgadospace in an array
with quasicrystal symmetry. Consider the case a&-Dimensional quasicrystal with atomic positiontoé N" atom
given by;

Xy =N+ a+%[§+,8], (1)
wheret = golden ratio ¢ and g are arbitrary real numbers e{|§d+ ﬁ]’s represent the greatest integer function. This

particular example is central to study the pentaggjand icosahedral quasilattice. The atomic pasitdé the 1D
(Fibonacci) quasicrystal described by Eqgn. (1) tm@ye-expressed as;

n(1+%)+Bv5
XN=n(1+%>+ﬁﬁ+[—%{%}—ﬁr+a], )
"(1+iz)+ﬁ\/§ N . . 1 . I
where T\/g signify the fractional part function and we hawed the fact thaél + T—z) =+/5 . An identity is
X = [X] + {X}. The function {X} is periodic in X with period 1. This expressiorofshe general form;

X, =na+ ¢+ F(na+ ¢), 3)
whereF (x) is periodic inx with periodb, and % is irrational. Expressions of this variety arisethe study of Frenkel-

Kontrova model[17], which describe a 1D in commeast crystal. The Fourier transform of such a deatomic

positions consist of Bragg peaks at positions
2nM 2nN

K==—+=—,

a b
where M and N are integers. This result may beinethby expanding the exponentigff ¢*®)appearing in the
expression for the transform in a Fourier seriest®fown and employing the completeness relation domplex
exponentials. For our case, this means that thdrbevpeaks at

= 2 (p+9), 4)

pq — 1+—2
where p and g are integers. With this in mind, vilka@mpute the diffraction pattern (i.e. Fourieansform of the 1D.
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quasicrystal of Eqn. (2))
F(K) = limy_, - X % | (5)
where we are summing over the N atomic positiothéchain. First considéf;(K) for K of the formK = K,,, as define
in egn. (4). Noting the identit&fl + Tiz) = /5, the exponent in eqgn. (5) is given by;
] ) n B 1m
IKpqXn = 2mi (pn + q;) + Kpq (? +a-— ;{? + ,8})
. . K . , K
= 2mi (pn +q [g + ﬁ]) +i (2nq - %) {g+ ﬁ’} + iKpqa — i (2nq - %),8 (6)
The first term in the expressidmi (pn +q [§+ ﬁ]) is an integer time&ri and therefore only yield a factor of unity
upon exponentiation. The last two teriis,,a — i (an —%)ﬂ are independent and contributes to the sum in an
important fashion. Sinc® < {% + ,8} <1, the second term(an - %) {g—i- ﬁ} lies between zero and, where

X =2nq — % sincet is an irrational number, the value of the secarchtis uniformly and densely distributed in the
interval (0, X), enabling us to approximate the saragn. (5) by an integral;

sinz
2

FK) = < [Fevdy = g2 e?, ()

2
where= K, a — (an - %) B andy = +§ . Equation (7) is the value &f(K) for the special
valuek' = K,,,, which we argued, correspond to the position afjgrpeaks. Thus we conclude that
sing .
FO0 = S )l ~ ). ®
2
Those familiar with the computation of the fourieansform of 1D quasicrystal via projection methadl recognize that
the two methods agree exactly.
The brightest spots occur for tha§e= K,,, where X is small. This occurs Whegn is close ta. It is well known that the

best rotational approximants tooccur when q and p are successive Fibonacci nuRbdthis means that the sequence
of most intense peaks correspondéptay) = (F,41, E,)[19].

3.0 Methodology

3.1 Laue Code

The code, “Laue” written by Silsbee and Drager [®#8s employed in this work. Basically the code catep the
electron density and diffraction pattern of a omaehsional array of atoms. The one-dimensionaltatys represented
by it is real-space electron density which is gatest from superposition of atomic electron densitiehe corresponding
diffraction is then computed as the square of therier transform of that electron density. To cotepthe diffraction
pattern (Intensity) of the electron density, “LaugSes a Fast Fourier Transform (FFT) routine. Titensities are
normalized to give a height for the central peakmé for the monatomic quasicrystal.

The program has two main output windows for disjuigythe electron density and diffraction patterspectively.
The code has eight menus namely: Quit, Display,fiGore, Presets, Help, Material, Modulation and dD&dte. The
material menu allows user to select the type ofnmtsimulated. The possible options are Monatammystal, Diatomic
crystal, Single atom, Pair of atoms, Liquid and Slciystal. In this case of simulating quasicrystia¢ program has the
following variables: Lattice constant, Size of ataime Spacing ratio and Atom shape. In this wokk dkomic shape is
chosen to be Gaussian.

3.2 Procedure

The lattice constant, size of the atom were sdt@A and 0.1 A respectively and the atomic posmtias chosen to be
Gaussian. The atomic spacing ratio was set to.®8 dnd then the simulation executed. The datahierdiffraction
pattern was then exported to excel for further ysialwhich includes among others, the comutatiothef width of the
diffraction pattern and the separation of the Brplgmes. This was repeated for atomic spacing odtio0, 1.2, 1.3, 1.4,
15,1.6,1.7,1.8,1.9 and 2.0.
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4.0 Results And Discussion

4.1 Results
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FIG. 11.0 The diffraction pattern of one dimensionaquasicrystal at spacing ratio of 2.0

The diffraction patterns for the various golden nemvestigated are shown in figures 1-11. Theofilhg are observed:
i.

Each diffraction pattern has sharp peaks, just ttkese of the periodic crystal, however, the pehlse
sidebands and the sidebands have more sidebangisnénal, there are more sidebsnds on the sidelzangsu
look with more sensitivity.

The spatial distribution of the diffractions patterare different, i.e each golden means producesigue
diffraction pattern. The lower the golden mean ble¢ter the diffraction pattern resembles that ef pleriodic
monatomic chain.

The intensity of the central peak decreases agdlien mean increases.

The width of the diffraction pattern decreaseshaslattice constant increases. Also the width desme as the
size of the atom is increase.

The variations of the separation between Bragggslamith scattering wave vectdK are shown in table 1. It
can be seen from the table that for a given gofdeand,;, decreases initially very fast with increasing ssratg
vector and latter becomes almost flat i.e. consklso as expected the variationd)yf with scattering vector is
independent of golden mean.

Journal of the Nigerian Association of Mathematic&thysics Volume&0 (March, 2012) 285 — 292
290



Simulation of the diffraction pattern of ...  Sa’'id and Babaji J of NAMP

Table 1: variation of the separation between Bragg planek, with scattering wave vector

Ak
Golden mean
Ak (AD) 1.4740 3.2730 4.8480 6.4220
1.05 d, (A) 4.2627 1.9197 1.2960 0.9784
Ak (A7) 1.6500 2.9610 4.4900 6.2380
1.10 4, @) 3.8080 2.1220 1.3994 1.0072
Ak (A7) 1.3540 6.5180 7.9650 9.2040
1.20 d, () 4.6405 0.9640 0.7889 0.6827
Ak (A7) 1.4800 4.8110 6.3790 9.7100
1.30 d, (A 4.2454 1.3060 0.9850 0.6471
Ak (A7) 1.2210 3.2710 4.7620 8.1160
1.40 d, (A 5.1459 1.9209 1.3194 0.7741
Ak (AD) 3.1180 6.4930 9.6910 12.7100
1.50 d, @) 2.0151 09677 | 0.6484 0.4943
Ak (A°D) 1.7910 2.9790 4.8460 7.9010
1.60 d, (A) 3.5082 2.1092 1.2965 0.7952
Ak (A7) 1.8770 2.8520 4.8010 6.5880
1.70 d, (A 3.3475 2.2030 1.3087 0.9537
Ak (A1) 1.6440 3.3580 6.1630 8.0320
1.80 d, (A 3.8219 1.8711 1.0195 0.7822
Ak (A1) 1.5800 3.3760 5.0220 6.6690
1.90 d, (A 3.9767 1.8611 1.2511 0.9421
Ak (A7) 1.6640 3.2480 4.6880 6.4160
2.0 d, (A 3.7759 1.9345 1.34030 0.9793

These observations are fundamentally the charatiterof the diffraction pattern of quasicrystalsdaare in
agreement with the finding of other workers [124, 25].

4.2 Discussion

One of the most unexpected aspects of diffractiomfquasicrystals is that they produce sharp, elisadiffraction
peaks. A disruption of periodicity often leads tisd of definition i.e. broadening of peaks, incee&s background
intensity in the diffraction pattern. However, apdicity by itself does not cause a broadeningitffattion peaks. This
can be demonstrated in one dimension by lookirtheatourier transform of the Fibonacci array. Tharker transform
of this array does not show the broad peaks tlahamally associated with disordered structurdikdriransforms from
periodic arrays, the transform from Fibonacci arfi@yns a dense set of peaks having different iitiess The positions
of the peaks are related to each other by the mufethe golden mean[17]. Thus each golden meaduges a unique
diffraction pattern as observed in this work.

As the lattice constant of a pure monatomic chandéseased, the width of the diffraction patteroraases and the
intensity of the peak for a given scattering waeetor AK) also increases [18]. Increasing the lattice comstiecrease
the primitive reciprocal lattice vector which inrtutranslate into decreasing the chances of desteumterference.
Increasing the lattice constant of a pure monatainéd is equivalent to increase the spacing betwleatoms. Thus one
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might wrongly conclude that as the golden meanilbbéfacci array is increased there will be an inseeia the intensity

of the diffraction peaks. However, we found in thisrk that intensity of the central peak decreasethe golden mean
increases. In reality, the intensities of diffraatifrom crystal depend upon the relative positiohthe atoms in the unit
cell, as well as upon the atomic numbers of thenatand the electron distribution within each of dtems. It also be
noted that, the spacing between tHe and (i + 1)** atom is given by the lattice constant if ti& position in the
Fibonacci chain is 0, otherwise the separatiogiven by the lattice constant times the spacing.rdthus the golden
mean (spacing ratio) cannot be infinitely increabedause any increase above a certain maximunesililt in placing
the i**atom outside thé"cell. Thus as the golden mean is increased (witiénallowed range) the separation between
the atoms in the neighboring cells decreases thieresulting in the decrease in the intensity of teamtral peak as
observe in this work.

5.0 Conclusion
The effect of the variation of atomic spacing ratica Fibonacci array has been investigated ugiegcbde ‘Laue’. We
are able to observe the basic features of theadiftrn by a quasicrystal. Most importantly the daling are established
in this work:

i. Each golden mean produces a unique diffractionepatand that the lower the golden mean the beltier t

diffraction pattern resembles that of a periodicatomic chain.
ii. The intensity of the central peak decreases agdlien mean increases
iii. The variation of the separation between Bragg @aséound to be independent of the golden mean

References

[1] D.Shechtman, I. Blech, D. Gratias,and J. C&tay. let.53 1951(1984)

[2] J.W. Cahn, Epiloque, Proceeding of the Intdoratl Conference on quasicrystals, edited by Cotland R.
mosseri(world scientific, Singapore,1996),.P.807

[3] R. Lifshitz, Zert. Krist, Introduction to Quasiystal,217,432(2002)

[4] R. Lifshitz, Quasicrystal; A matter of defirotn, Found. Phy83(12) 1703-1711(2003).

[5] N.D. Mermin, Rev. Mod. Phy$4,1051(1992)

[6] R. Lifshitz, Theory of color symmetry for pedix and quasiperiodic crystal, Rev. Mod. P§&,1181(1997)

[7] R. Lifshitz and S. Even-Dar Mandel, Symmetry wiagnetically ordered quasicrystals, Acta Crys60,
167(2004)

[8] www.jcrystal.com/steffenwebu/gc/quasit,gaiccessed through the internet in 2011

[9] G.Barak, Dislocation dynamic in Quasiperiodattern. MSc. Thesis,(unpublished) Tel Aviv Univeys{2005)

[10] J. James, Connoly, Introduction to X-ray Powbéfraction, Springer (2009).

[11] M. Senechal, Quasicrystals and Geometry, CaigbrUniversity, London (1995).

[12] R. Lifshitz, The symmetry of Quasiperiodic Gtgl, PhysicaA232,633-647(1996)

[13] Report of Executive committee for 1991 Intdiomal Union of Crystallogray, Acta. Crystallogragd48, 922-
946(1996)

[14] L. Pauling ,Apparent Icosahedral symmetryug do direct multiple twining of cubic cryst&17, 512-
514(1985).

[15] R. D. Diehl, J. Ledieu, N. Ferralis, AW. Szdi® and R. Mc Garth , Low-energy-electron diffifantfrom
Quasicrystal surface, J. phys. Condens mafier3, R63-R81(2003).

[16] For a review, see P.Bak, Rep. Prog. P45,5587(1981) V.L pokrasky and A.L. Tolapov, Theory of
Incommensurate crystal, Soviet Review (1985).

[17] S. Piao, Syntheses and Structural Studiesuafsigrystal Approximants; RECd6 and RE13 Zn~58, Hhésis
(unpublished), Stockholm University, (2005).

[18] R. H. Silsbee and Drager, Simulations for 8&tate Physics, Cambridge University Press, (Loh@605.
Chapter three.

[19] T. Ishimasa, H.U. Nissen,and Y. Fukano, Nedeoed state between Crystalline and amorphous-@rNi
particles, Physical Review Lettb, 5, 511-513(1985).

[20] N. Ferralis, A. W. Szmodis, and R. D. Diehifftaction from one- and two-dimensional quasicaykte
gratings,American Association of Physics Teachétsjversity Park, Pennsylvanig§802,1241-1246(2004).

[21] D. Livine, Quasicrystals, Journal De Physigde,8, 397-402(1985).

[22] N.G. de Bruijn, Ned, Acad. Weten. Proc. Se43/89,53(1981).

[23] P.Kramer and R. Neri, Acta Crystallogr40, 580(1984).

[24] M. Dueau and A. Katz, Phys. Rev. Lé&4, 2688(1984).

[25] S.Y. Latvin, Generation and Experimental Measuent of One-Dimensional Quasicrystal Diffractfeattern,
Am. J. phys56,1, 72-75(1988)

Journal of the Nigerian Association of Mathematic&thysics Volume0 (March, 2012) 285 — 292
292



