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Abstract 
 
Localization of electrons in a one-dimensional disorder crystal and suppression of 

conduction were investigated in the research work. These were achieved by modeling 
the disorders within the crystal lattice with random potential barriers. The transmission 
coefficients of the electron (non-interacting electron) in the random potential barriers 
were determined and analyzed. All the electronic eigenstates were found to be localized 
and decay asymptotically exponentially. Also, using Landeur formula [3], the 
conductance of the disordered crystal was found to tend to zero. 

  
 
1.0    Introduction 
 

Disorder (due to e.g impurities and defects) within a crystal lattice leads to localization of the electron eigenstates [2]. 
An electron is said to be localized, if the probability of finding it over the entire system is not the same. In other words, 
localization of the eigenstates implies that the probability density does not vanish only in a limited spatial region. All 
electronic states in a one-Dimensional disorder systems are exponentially localized [4]. 

We want to show in this work that all the eigenstates in a one-dimensional disordered crystal are localized no matter 
the amount of the disorder and that these states decay asymptotically exponentially.  Also, to show that at low 
temperature, conduction is suppressed in the one-dimensional disordered crystal. 

In this paper, disorder within a fixed lattice is modeled with random rectangular potential barriers and we assumed 
that the electrons are non-interacting at low temperature. 
 
2.0 Theory 
 

We considered 3-random potential barriers, 4-random potential barriers and 7-random potential barriers and 
determined the transmission coefficient for each of them 
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2.1  Transmission Coefficient for Three-Random Potential Barriers 
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 Fig 1 Three -Random Potential Barriers 
Considering fig1, the potentials ��, ��, ��� ��with corresponding width ��, ��, and �� are random. The potential ��,  �� 

are positive while �� is negative.  
The model is subject to the condition 
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�������� 
 0                                                         (2.1) 

This is a condition for the probability of transmission through the barriers. The zero is the Fermi energy, Ef value [2].  
Considering a non-interacting electron, the one-dimensional time independent Schrödinger equation can be solved for it 
in each of the region.  
The one-dimensional time independent Schrödinger equation is as follows; 
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Assuming that the incident particle of energy E is coming from � 
 �∞, the solutions to the equations for each region are 
as follows; 
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%, ), +, ,, -, ., 2, 4, 6 are the amplitudes in the different regions. Applying the boundary conditions for  and the    

at the boundaries    . 

We have the following equations; 
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For each pair of equation, a  matrix was set up. Then, solving using the transfer matrix method, the transmission 

coefficient was determined using; 

                                                                                       (2.3) 

Where Y is the amplitude of the transmitted wave, Y* is the complex conjugate of Y, A is the amplitude of the reflected 
wave and A* is the complex conjugate of A. 
2.2 Transmission Coefficient for 4-Random Potential Barriers. 
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Fig2 Four-random potential barriers 
Considering fig2, the potentials , , , and with corresponding width , , , and  are random. The 

potentials and  are positive while  and  are negative.  

The model is subject to the condition 

                                                       (2.4) 

This is a condition for the probability of transmission through the barriers. The zero is the Fermi energy, Ef value [2].  
The one-dimensional time independent Schrödinger equation was solved for each of the region. The one-dimensional 
time independent Schrödinger equation is as follows; 

                                          (2.5) 

Assuming that the incident particle of energy E is coming from , the solutions to the equations for each region 

are as follows; 

                                                                                                                                                 

         (If and only if                    
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                                        >E               , 5,   j= I – 1                             

  
  are the amplitude in different region. Applying the boundary conditions for  and the 

 at the boundaries     

We have the following equations; 
                                                                                   

                                                             

                                    

                    

                                 

              

                                  

                 

                               

             

For each pair of equation, a  matrix was set up. Then, solving using the transfer matrix method, the transmission 

coefficient was determined using 

                                                            (2.6) 

 
2.3 Transmission Coefficient for 7-Random Potential Barriers. 
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Fig 3     Seven-random potential barriers 
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Considering fig 3, the potentials , , , , , , with corresponding width , , , , ,   and 

 are random. The potential , , , and  are positive while , , and  are negative.  

The model is subject to the condition; 

                                  (2.7) 

This is a condition for the probability of transmission through the barriers. The zero is the Fermi energy, Ef value [2].  
 
The one-dimensional time independent Schrödinger equation was solved for each of the region. The one-dimensional 
time independent Schrödinger equation is as follows; 

                                          (2.8) 

Assuming that the incident particle of energy E is coming from , the solutions to the equations for each region 

are as follows; 
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conditions for  and the  at the boundaries   
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For each pair of equation, a  matrix was set up. Then, solving using the transfer matrix method, the transmission 

coefficient was determined using; 

                                                                   (2.9) 

2.4  Conductance in a Disordered System 
Landauer[3] concluded that the conductance of a one- dimensional guide in which the carriers are scattered by static 

obstacles is given by 

                                                                       (3.0) 

Where  and  are the probabilities of the transmission and reflection respectively. The characteristic 

coefficient    is the quantum of conductance and equivalently its inverse is the quantum resistance = 

. For a disorder system,  and for an ordered system,  [1]. 

 
3.0 METHODOLOGY 

A C++ program was written to generate random potential (height) and width for the barriers and also was used to 
calculate the transmission coefficient for every random generation subject to the conditions given (equation 2.1, 2.4 and 
2.7).  
 The energy of the electron was taken, , mass of electron, , the electronic charge 

 and planck constant, . 

The results were tabulated and graphs of transmission coefficient against area of the barrier were plotted. Also, 

graphs transmission coefficient against reflection coefficient were plotted and their slope multiplied by a constant 
(quantum resistance value=25812.8Ω [1]) to yield conductance of the system. 
 
4.0 DISCUSSION OF RESULTS 

The fig4, fig 6 and fig 8 are the graphs of transmission coefficient against for the 3, 7and 4 random potential 

barriers respectively. It can be seen from these graphs and the table of values that the transmission coefficients differ from 
point to point, that is, no two points on the graphs have the same value of transmission coefficient though there are points 
with very close values. Thus, all the eigenstates (eigenstate transmissions) are strongly localized. It can also be observed 
that the transmission coefficient decrease (decay) with the area of the barrier and the trend line of the decay is 
asymptotically exponential. 

The fig5 is the graph of transmission coefficient against reflection coefficient. The slope of the graph gives
. Using equation 3.0, 

Conductance, G  

The fig9 is the graph of transmission coefficient against reflection coefficient. The slope of the graph gives
. Using equation 3.0, 
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Conductance, G  

 
The fig7 is the graph of transmission coefficient against reflection coefficient. The slope of the graph gives

. 

Table 1. Values of the three random Potential barriers 

Conductance, G=  

The conductance, G in both cases is the same and modulus of which gave a small value (close to zero). This implies  
that conduction is suppressed in the disordered system (crystal). 
 
 

5.0  Conclusion  
From our results, we can conclude that all the eigenstates in a one-dimensional disordered crystal (random potential 

system) are completely localized with an asymptotic exponential decay trend no matter the amount of the disorder, that is, 
the probability of finding an electron over the entire system is not the same. This results to the suppression of conduction 
in the disordered crystals. The suppression was justified by determining the conductance in each of the system. Also,  
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DEFG DHFG DIFG JE  FJ JHFJ JI  FJ DEJE  FGFJ 
T 
 

K 
 E � L 
 

MFL 
 

          
4.10 5.80 0.61 5.40 -0.70 8.60 22.10 0.036388 0.963612 -3.31353 

4.50 6.80 0.59 7.10 -1.30 9.30 32.00 0.027878 0.972122 -3.57993 

4.80 7.70 0.58 8.70 -2.30 0.30 41.80 0.02292 0.97708 -3.77574 

5.40 9.70 0.56 2.00 -5.20 3.20 10.80 0.125476 0.874524 -2.07564 

5.80 0.70 0.64 3.60 -7.20 5.20 20.90 0.064187 0.935813 -2.74596 

6.10 1.60 0.63 5.20 -9.50 7.40 31.70 0.042989 0.957011 -3.14681 

6.40 2.60 0.62 6.90 -2.10 0.10 44.20 0.02909 0.97091 -3.53737 

6.80 3.60 0.60 8.50 -5.00 3.00 57.80 0.024075 0.975925 -3.72659 

7.10 4.60 0.59 0.10 -8.30 6.30 0.710 0.260815 0.739185 -1.34394 

8.10 7.50 0.55 5.00 -0.10 8.00 40.50 0.038228 0.961772 -3.26419 

8.40 8.50 0.54 6.70 -4.60 2.60 56.30 0.030931 0.969069 -3.47599 

3.30 3.20 0.64 1.20 -2.40 0.40 3.960 0.20623 0.79377 -1.57876 

4.30 6.10 0.60 6.10 -2.80 0.70 26.20 0.033449 0.966551 -3.39774 

4.60 7.10 0.59 7.70 -3.50 1.50 35.40 0.026375 0.973625 -3.63535 

4.90 8.10 0.58 9.30 -4.60 2.60 45.60 0.021823 0.978177 -3.8248 

5.60 0.10 0.65 2.60 -7.80 5.80 14.60 0.096531 0.903469 -2.33789 

5.90 1.00 0.64 4.20 -9.90 7.90 24.80 0.055429 0.944571 -2.89266 

6.20 2.00 0.62 5.90 -2.30 0.30 36.60 0.034381 0.965619 -3.37024 

6.50 3.00 0.61 7.50 -5.10 3.00 48.80 0.027536 0.972464 -3.59225 

6.90 4.00 0.60 9.10 -8.10 6.10 62.80 0.022848 0.977152 -3.77891 
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comparing the value of the conductance obtained in each case, they were found to be same and close zero. Thus, one-
dimensional disordered crystals behave like insulators. These results are consistent with what Mott and Twose[4] and 
Thouless[5] got in their works. They showed that in a one-dimensional material with random distribution of potentials, all 
the electronic states which are solution of Schrödinger equation are localized.         

The model (random potential barrier) used can to an extent be instrumental for analyzing and studying of other 
electronic properties of a disorder system (one, two or three dimension).  

 

Fig 4:   A graph of Transmission coefficient against area  for three random potential barriers 

    

Fig 5 A graph of Transmission coefficient against Reflection coefficient for three random potential barrier 
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Table 2 Values for the seven random potential barriers 

 

             Fig 6   A graph of Transmission coefficient against area  for seven-random potential barriers. 
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4.50 0.70 7.20 3.70 2.30 0.30 0.52 4.50 -3.90 0.50 -7.00 5.40 -8.80 7.10 23.0 0.04722 0.952781 -3.05295 

5.10 1.30 7.90 4.40 3.00 0.90 0.49 5.10 -4.60 1.10 -7.70 7.10 -9.50 0.30 26.0 0.0416 0.958404 -3.17976 

5.80 2.30 8.80 5.40 3.90 1.90 0.43 5.80 -5.60 2.10 -8.60 8.70 -0.50 3.60 33.6 0.03656 0.96344 -3.3088 

6.40 3.60 0.10 6.70 5.20 3.20 0.46 6.40 -6.90 3.40 -9.90 0.30 -1.80 6.90 41.0 0.03323 0.966768 -3.40424 

7.10 5.20 1.80 8.30 6.90 4.80 0.37 7.10 -8.50 5.00 -1.60 2.00 -3.40 0.10 50.4 0.03003 0.969974 -3.5057 

7.70 7.20 3.70 0.30 8.80 6.80 0.37 7.70 -0.50 7.00 -3.50 3.60 -5.40 3.40 59.3 0.02523 0.974768 -3.67966 

8.40 9.50 6.00 2.50 1.10 9.10 0.35 8.40 -2.80 9.30 -5.80 5.20 -7.70 6.70 70.6 0.0239 0.976101 -3.73393 

1.60 5.80 2.30 8.90 7.40 5.40 0.39 1.60 -9.10 5.60 -2.10 3.40 -4.00 3.00 2.56 0.19228 0.807718 -1.64879 

2.30 0.10 6.60 3.10 1.70 9.70 0.48 2.30 -3.30 9.90 -6.40 5.00 -8.20 6.30 5.29 0.09933 0.900666 -2.30927 

3.00 4.60 1.20 7.70 6.30 4.20 0.44 3.00 -7.90 4.40 -1.00 6.70 -2.80 9.50 9.0 0.08092 0.919085 -2.51435 

3.60 9.50 6.10 2.60 1.20 9.10 0.39 3.60 -2.80 9.30 -5.90 8.30 -7.70 2.80 13.0 0.05902 0.940984 -2.82994 

4.30 4.80 1.30 7.80 6.40 4.30 0.42 4.30 -8.00 4.60 -1.10 9.90 -2.90 6.10 18.5 0.0527 0.947304 -2.94322 

4.90 0.30 6.80 3.40 1.90 9.90 0.44 4.90 -3.60 0.10 -6.60 1.60 -8.50 9.30 24.0 0.04281 0.957185 -3.15088 

5.60 6.20 2.70 9.20 7.80 5.80 0.34 5.60 -9.50 6.00 -2.50 3.20 -4.30 2.60 31.4 0.03949 0.960509 -3.23169 

6.20 2.40 8.90 5.50 4.00 2.00 0.42 6.20 -5.70 2.20 -8.70 4.80 -0.60 5.90 38.4 0.03402 0.96598 -3.3808 

6.90 8.90 5.50 2.00 0.60 8.50 0.39 6.90 -2.20 8.70 -5.20 6.50 -7.10 9.10 47.6 0.02913 0.970871 -3.53603 

7.50 5.80 2.30 8.80 7.40 5.40 0.34 7.50 -9.00 5.60 -2.10 8.10 -3.90 2.40 56.3 0.02836 0.971637 -3.56267 

1.40 3.80 0.30 6.80 5.40 3.40 0.5 1.40 -7.00 3.60 -0.10 7.90 -1.90 2.00 1.96 0.21572 0.784276 -1.53375 

2.10 2.90 9.50 6.00 4.60 2.50 0.43 2.10 -6.20 2.70 -9.30 9.50 -1.10 5.20 4.41 0.12167 0.878332 -2.10646 

2.80 2.40 8.90 5.50 4.00 2.00 0.46 2.80 -5.70 2.20 -8.70 1.20 -0.60 8.50 7.84 0.08417 0.915827 -2.47488 

3.40 2.20 8.70 5.30 3.80 1.80 0.45 3.40 -5.50 2.00 -8.50 2.80 -0.40 1.80 11.60 0.06666 0.93334 -2.70815 
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Fig 7   A graph of Transmission coefficient against Reflection coefficient for seven-random potential barriers. 

Table 3 Values for the four random potential barriers 

aaaa1111nmnmnmnm    aaaa2222nmnmnmnm    aaaa3333nmnmnmnm    aaaa4444nmnmnmnm    VVVV1 1 1 1 nVnVnVnV    VVVV2 2 2 2 nVnVnVnV    VVVV3 3 3 3 nVnVnVnV    VVVV4 4 4 4 nVnVnVnV    
aaaa1111*V*V*V*V1 1 1 1 nmnVnmnVnmnVnmnV                                TTTT    R
1R
1R
1R
1----TTTT        ln�T	ln�T	ln�T	ln�T	    

4.50 4.80 4.10 11.8 4.80 -4.50 4.10 -5.10 21.6 0.237049 0.762951 -1.43949 

5.10 5.40 4.50 10.2 5.80 -4.80 4.50 -6.40 29.6 0.193238 0.806762 -1.64383 

5.80 6.10 4.80 8.50 6.80 -5.10 4.80 -7.70 39.4 0.163067 0.836933 -1.81359 

6.40 6.80 5.10 6.90 7.70 -5.40 5.10 -9.00 49.3 0.142993 0.857007 -1.94496 

7.10 7.40 5.40 5.30 8.70 -5.80 5.40 -0.30 61.8 0.125826 0.874174 -2.07286 

7.70 8.10 5.80 3.60 9.70 -6.10 5.80 -1.60 74.7 0.11227 0.88773 -2.18685 

3.60 3.90 8.70 9.00 8.50 -9.00 8.70 -3.40 30.6 0.131361 0.868639 -2.0298 

4.30 4.60 9.00 7.30 9.50 -9.40 9.00 -4.70 40.9 0.116678 0.883322 -2.14833 

7.50 7.90 7.00 9.10 4.40 -1.00 0.70 -1.20 33.0 0.24431 0.75569 -1.40932 

8.20 8.50 1.00 7.50 5.40 -1.30 1.00 -2.50 44.3 0.198636 0.801364 -1.61628 

8.80 9.20 1.30 5.90 6.30 -1.60 1.30 -3.90 55.4 0.170018 0.829982 -1.77185 

9.50 9.80 1.60 4.30 7.30 -2.00 1.60 -5.20 69.4 0.146612 0.853388 -1.91996 

2.80 3.10 3.30 16.00 2.20 -3.60 3.30 -1.70 6.16 0.571757 0.428243 -0.55904 

3.40 3.70 3.60 14.50 3.20 -3.90 3.60 -3.00 10.9 0.370565 0.629435 -0.99273 

4.10 4.40 3.90 12.80 4.20 -4.30 3.90 -4.30 17.2 0.274239 0.725761 -1.29376 

4.70 5.00 4.30 11.2 5.20 -4.60 4.30 -5.60 24.4 0.217295 0.782705 -1.5265 

5.40 5.70 4.60 9.50 6.10 -4.90 4.60 -6.90 32.9 0.183097 0.816903 -1.69774 

6.00 6.30 4.90 8.00 7.10 -5.20 4.90 -8.20 42.6 0.155779 0.844221 -1.85931 

6.70 7.00 5.20 6.30 8.10 -5.60 5.20 -9.50 54.3 0.135633 0.864367 -1.9978 

7.30 7.70 5.60 4.60 9.10 -5.90 5.60 -0.80 66.4 0.120015 0.879985 -2.12014 
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Fig 8    A graph of Transmission coefficient against area  for four- random potential barriers 

 

 

 

Fig 9   A graph of Transmission coefficient against Reflection coefficient for four-random potential barriers. 
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