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Abstract

Since approximately 1950 an increasing portion of experimental solid state
physics research has been concerned with studying defectsin crystals. This work uses
the code BORN written by Silsbee and Drager to simulate the dynamics of a perturbed
linear chain of atoms. Specifically, the dispersion curves for pure and impure
monatomic crystal has been obtain. Also the power law dependence of the impurity
mode investigated. It has been found that the impurity atom does not alter the shape of
the dispersion curve. The effect of the impurity occurs at higher wave vectors, that is,
in the lower wavelength limit. As the ratio of the atomic mass of the impurity to the
host mass decreases, the maximum angular frequency increases. Also, the power law
dependence has been confirmed.
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1.0 Introduction

It has been observed [1] that since approximat&y0lan increasing portion of experimental solidestahysics
research has been concerned with studying defectsystals. However, the theoretical understandind controlled
preparation of compound with defects or randomcstine has been very slow in developing. This warkntended to
contribute positively in our understanding of legtivibration associated with defects. It is thstfpart of our intention to
investigate the effects of defects in nanotubes.

In this work, a code known d®rn, written by Silsbee and Drager[2], was employeditoulate the dynamics of a
perturbed linear chain of atoms. Specifically, freuencies of the localized modes were computedtia@ power law
dependence of the frequency of the local mode thichmass of the impurity investigated. Also, dispmar curves for
pure and impure monatomic crystal were generatdceaamined.

2.0 Theory
2.1 Normal Modes of Monatomic Linear Chain of Atoms

The atoms of a solid take part in thermal vibrai@bout their equilibrium positions. Because oftrarg
interaction between them, the nature of these tidrs turns out to be extremely complex and an teuwdescription of
it present enormous difficulties. Therefore, apimate methods and various simplifications are usesdlve this
problem.

Instead of describing the individual vibrationstbé particles the practice is to consider theitemtive motion
in crystal which is spatially ordered structure.isTts based on the fact that powerful bonds imntetliaransmit the
vibrations of one particle to other particles andadlective motion in the form of an elastic wavesélving all the
particles of the crystals is excited in it. Suchiexive motion is called the normal mode of ait&t[3]. The number of
normal modes coincides with the number of degrédéieedom, which is 3N if N is the number of pale& constituting
the crystal.
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Fig.1 represents a linear chain of atoms separbtiec distancea and able to vibrate in the direction
perpendicular to the chain. Such a chain may bardegl as a string. If the ends of the chain amdfixhe fundamental
mode corresponding to the lowest frequeagy, is represented by the standing wave with a nodactt end. The length
of the shortest wave in such a chain is eviderglyaéto twice the distance between the atoms ofltlaén (Fig. 2.):

Amin= 2a. 1)
The corresponding maximum frequengy,ay is
Wmax = 21V hin = 1V/aQ, (2)
where v is the velocity of wave propagation (ofrshualong the chain.
This maximum frequency is a parameter of the clsamaterial and is determined by the inter-atomstatice and the

velocity of wave propagation[4]. Should we set 3.6 x 10°°m (the lattice parameter of copper) and 3550nVs (the
velocity of sound in copper) we would obtain., ~ 3 x 10** s, which corresponds to the frequency of atomications

in sound.
a
. I

Fig. 1 Normal modes of a linear chain made up efiital atoms.

Fig. 2 Normal modes of the chain correspondinghtwrtest wavelength.

Consider a linear chain of atoms with magseparated by lattice constantandwith only nearest — neighbour
interactions. The mass displacements for normal emdeave the formJ=ue!*se="% and the periodic boundary
condition can be writterg*"*=1. The possible values for the scattering wave vectoe thenk = (2zn)/Na, where n is
an integer. Thus, the Newton equation of motiobd]s:

d’us _
M——> = C(Ur+ Us_1- 2U), 3

PTE
where C is the force constant. The above equatiarbe written as:
Mo? = Ceika+ gika . 2) (4)
so that,
©’= (4C/IM) Sirf2Ka (5)
A complete set of normal modes can be enumerategsblyyng equation (5) for the values lofvithin the first Brillion

zone[6]. All normal modes solutions to equation &8 doubly degenerate in frequency witfk) = w(—k) except fork
= 0 andk = zn/a. The dispersion relatiomw (k) is shown in fig. 3.
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Fig.3. Dispersion Curves of a monatomic linear chain.

To describe wave processes one usually uses the weastor g whose direction coincides with that afvey
propagation and whose absolute value is:

q =2t/ A (6)
It follows from (2) that 2/ . = w/v. Therefore,
g =wlv, (7)

The phase velocity V, which enters equation (fsislf a function of the wave vector q and forraehr chain of
atoms bonded by elastic forces is expressed bfptlosving relation [4]:

V=v sin(qz—a)

=V qa
2

where \4 is the velocity of wave propagation in a continsistring. It follows from (8) that for a constamnthe velocity v
is practically independent of g and is approximaiéj only in the range of small g's, whe&in (ga/2)]/ga/2 =~ 1. In this
range w increases approximately in proportion to q (Fig A3 q increases the value ffiin (qa/2)]/(qa/2) steadily
diminishes. This causes the dispersion cus(@) to flatten out, so that at gr#a it runs parallel to g.

2.2  Localized Mode

The presence of light mass impurities in additiors¢attering the lattice waves of the host crystah give rise to
localized modes. These are normal modes of motfaied crystal which decay exponentially with distarfrom the
impurity instead of extending throughout the criyf2h

For m < M, a new mode with frequency above thééd) mode appears when the linear chain is lochtipatially.
Its eigenvector shows the impurity moving with krgmplitude, the neighbours of the impurity movingh
considerably less amplitude etc. Thus the eigeonveites not have simple harmonic spatial dependéimepresence of
the one impurity (M at m) leaves only a single eefion plane at m so that there must be even addsyinmetric and
antisymmetric) solutions[6]

3.0 The Born Code

Born is a lattice dynamics simulation of a one —dimenal chain of atoms. The simulated crystal can e r
have a mass defect, and the nearest neighbour tipgbtean be purely harmonic or contain an additiogaartic
component. (Silsbee and Dragger, 1980y.n reveals many features of the atomic motion intafgs Most importantly it
can be use to find the normal modes of a periodigyaof a very large number of atoms. The codertias build-in
presets and a user can also set up a project. ddelw@s five main menus namely: quit, display, icumé, presets and
help. These are located at the top of the main ewind For each preset the result of the simulat®shown in two
displays. At the top there is a graphical displagvging the oscillations of the atoms and the pragiag of the wave
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through the chain. Also, there is at the bottonirigorner a display of variation of the displacemeith time for an

atom. In addition to the menus, there are additidizog boxes which are displayed at the bottofhderner of the main
window. These dialogs are: run, initialize, bouydaonditions, initials, crystal-type and speed. dAlthere are other
dialog boxes depending on the choice of the pre$éisse include amplitude, wave vector, packettwigeak position,
impurity mass, and speed. For each of the prelsete tire additional common menus which are display¢he bottom-
left corner of the main window. These menus are; mitialize, boundary conditions, initials, crgstype and speed. In
addition there are other menus depending on theehaf the presets. These include amplitude, wasator, packet
width, peak position, impurity mass, and speed.

4.0 Result and Discussion

4.1 Dispersion Relation

The graph of angular frequency versus scatteringewactor K) (dispersion curve) for the monatomic linear chain
shown in fig. 4. This curve shows the reduced regmtations for a one — dimensional monatomic katiith a lattice
constant a. It is also the so — called acoustioabitudinal branch of the vibrational spectrum. sThibrational
frequencies are of the order of the frequenciesoahd waves in the crystal[7].

It has been found that the impurity atom does itet ghe shape of the dispersion curve, that igséts steadly and
flattens ask tends to 1.0. The effect of the impurity occurshagher scattering wave vectors, that is, in theeo
wavelength limit. As the ratio of the atomic mag$gte impurity to the host mass (m*/m) decreases ds we deviate
from the pure chain) the maximum angular frequengy,increases. Similar result has been observed byakig]l for
the special case of impurity layer on surface waves

The observed shape of the dispersion curve carxflaieed as follows. It follows from eqgn. (8) thar a given
lattice constana the velocityv is practically independent of g and is approxirtyaié, only in the range of small g's,
where[Sin (qa/2)]/qa/2 = 1. In this rangew increases approximately in proportion to q. As géases the value of
[Sin (qa/2)]/(qa/2) steadily diminishes. This causes the dispersiomecu(q) to flatten out, so that at gz#a it runs
parallel to g.
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Figure 4(a) Dispersion curve for pure monatomic crystal
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Figure 4(b) Dispersion curves for Impure monatomic crystal

4.2 Power law Dependence of the Impurity mode

From equation (5) the maximum angular frequengy,’ = 4C/M i.€ Wy = 2 /C/M . For a continuum chairG is

simply the spring constant. The power law depenel@fithe impurity modée graph oflog T againstog m*/m, whereT
is the period of the localized mode, is shown @n §. It can be seen that a straight line is oktisuggesting that,log
T andlog m*/m obey the power law relationship[9]. Hence, the eolaw dependence has been confirmed.
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Figure 5:graph of log T against log m*/m.

4.3 Effects of Boundary Conditions in the Born Simulation Code

The program employs two types of boundary conditiomamely periodic boundary condition and

fixed boundary condition.

The observed effects of the periodic boundary dmm are:

- All the atoms vibrate about their mgasitions.

- The displacements of the atoms could be largaegmnto the extent that they diffuse olutheir
original cells.

- The atomic displacements depends on the wavewantl that, it decreases on increasing wave vector
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However, the effects observed in the case of fbmahdary conditions are:

- The atoms at the end of the chain are staticothdr atoms vibrate about their mean positions.

- The displacements of the atoms is independettiteofvave vector.

- The vibration of an atom is confined to the regad the cell (i.e. the atoms do not diffuse out of their
own cells).

5.0 Summary and Conclusion

The codéborn has been used to simulate the dynamics of a peduihear chain of atoms. The perturbed chain
consist of atoms of mass with one of them replaced by an atom of mikssThe dispersion curve for the pure linear
chain has been obtained and agree with the exswlt.r&he impurity atom does not change the shdpbeodispersion
curve, however, as the ratio (m*/m) decreasesnthgimum angular frequencw ., Of the perturbed chain increases
above that of the pure chain. Finally, the power d&pendence has been confirmed.
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