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Abstract 
 
We present a lattice dynamical calculation of Caesium Chloride (CsCl) whose 

atoms form a bcc lattice having one type of atom at the cube centre and the other type 
on the corners of the cube. Dispersion curves, density of state, and lattice specific heat 
of  bcc Caesium Chloride were computed. The code used in the computation of the 
densities of state and dispersion curves was obtained from the Boardman Physics 
program book which we modified to obtain dispersion relation in the principal 
symmetry directions. In general, the obtained results agree reasonably well with the 
experimental data of the bcc Caesium Chloride. 
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1.0    Introduction 
 

Atoms in crystalline solids vibrate about their mean equilibrium positions at all temperatures [1]. These vibrations are 
responsible for a number of important properties of crystalline solids, some of which are the heat capacity, mechanical, 
heat transport and related physical properties of the solids. The study of these vibrations whose quanta are called phonons 
requires the knowledge of dispersion curves and density of states. 

Despite the role played by the density of states, it is very difficult to measure directly. Experimental data will 
normally give information on the phonon dispersion curves, and these will be used to determine the interatomic force 
constants, by comparing the experimental curves with those calculated from the force constants. Even when these have 
been determined, it is by no means simple to calculate the density of states analytically, but modern computing methods 
have proved an ideal tool for solving the problem numerically [2]. 

The space lattice of caesium chloride is body-centered cubic. The primitive basis of two identical atoms at 000 and  
�� �� 

��  is associated with each lattice point. Each atom has two nearest neighbours and eight next nearest neighbours.   

In this paper, a simulation program is used and the ratio of the two force constants is set so as to generate a 
theoretical set of dispersion curves and examine the effect of the two constants on the dispersion curves. We also choose 
values for the force constant in the secular determinant and evaluate the determinant over a mesh of points in k-space. We 
built up a histogram of density of states from which we determine the specific heat of the solid. 
 
2.0 Theory 

2.1 Dynamical matrix for a body- centered CsCl lattice (second nearest neighbor) 
In the harmonic and adiabatic approximations, the phonon frequencies of cubic systems are determined by solving the 
usual secular equation given by 
   |���� � 
��| � 0                                                                                                       (1)   ����� 
, ����, � ��� � are in their usual meanings. 
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  The dynamical matrix element for a body-centered CsCl lattice is given by the following matrixes elements [3] given as 
 

Φ��1,1� � �� ���������� 

�
 !"����1 # �$� 0 00 "���%1 # �&' 00 0 "����1 # �(�)

*+                               (2)                                              

        

Φ��1,2� � �� ����������  -�.$.&.( /$/&.( /$.&/(/$/&.( �.$.&.( .$/&/(/$.&/( .$/&/( �.$.&.(
0                                       (3) 

     

Φ��2,1� � �� ���������� -�.$.&.( /$/&.( /$.&/(/$/&.( �/$/&.( .$/&/(/$.&/( .$/&/( �.$.&.(
0                                       (4) 

  

         Φ��2,2� � �� ����������
�
 !"����1 # �$� 0 00 "���%1 # �&' 00 0 "����1 # �(�)

*+                               (5) 

     Combining Eqs. (2), (3), (4) and (5) gives 

1�2� �3 4Φ��1,1� Φ��1,2�
Φ��2,2� Φ��2,2�5                                                                                       (6A) 

1�2� �3 �� ����������

�
  
  
  
!"����1 # �$� 0 0 – .$.&.( /$/&.( /$.&/(0 "���%1 # �&' 0 /$/&.( �.$.&.( .$/&/(0 0 "����1 # �(� /$.&/( .$/&/( �.$.&.(�.$.&.( /$/&.( /$.&/( "����1 # �$� 0 0/$/&.( �.$.&.( .$/&/( 0 "���%1 # �&' 0/$.&/( .$/&/( �.$.&.( 0 0 "����1 # �(�)

**
**
**
+

      �6�                                 

where .$ � .89:$�, /$ � /;�:$�, .�$ � .892:$�, .& � .89:&�, /& � /;�:&�, .�& � .892:&� ,  �$ � �< =�1 �.892:(�� and " � �� ��> ( the ratio of mass of the atoms in the cell) 

In order to make an analytical calculation of the density of states, it is necessary to integrate �?@���� over a constant 
frequency surface in k-space. Since this is not normally feasible, the usual approach is to compute the density of states 
numerically [5]. This is usually referred to as “root sampling method” since it build up the density of states by finding the 
roots of the secular equation at large number of points in the brillouin zone. 
The usual expression for specific heat (.A� in the Debye model with the modification made by Born is given by  

( )
( )

3 4

20
9
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and ( )Bx k Tω= h .  The quantity that reflects the properties of the material is BC, which depend on n, V, cl, and ct. 

where cl, and ct elastic wave velocity for longitudinal and transverse waves, n is the number of atom, kB is Boltzmann 
constants and V is the molar volume.   

3.0 Results and discussion 
 

An understanding of microscopic properties of insulating materials requires the phonon dispersion curves and density 
of states. In spite of the fundamental role played by density of states, it is very difficult to measure directly. The work was 
motivated by a recent theoretical study of the dispersion relations of bcc cerium [4] to develop a numerical method of 
computing not only the dispersion relations but also the densities of states and specific heat capacity. 

 
The program used in this work originated from the “Boardman Physics Program” book, [3]. The modifications made 

to it, as explained in [4], include; reformatting the program to calculate in double precision in order to reduce round off 
errors and eliminate singularities; substituting the NAG’s subroutine with a more readily available one. We also replaced 
the NAG’s subroutine F02AAF with the Numerical Recipes [5] real matrix eigenvalue solver. 

The normal mode frequencies obtained for [100], [110], and [111] over a cubic mesh point are weighted and stored in 
histograms, to form the densities of states for each mode of vibration, presented in Figure 4. Figure 5 is the total density 
of states for bcc caesium chloride.  
 

4.0 Conclusions 
 

A Fortran program developed for personal computers [2] for calculating phonon dispersion curves and density of 
states [Keeler 1980] was used for bcc caesium chloride structures. The efficacy of the method is seen from the agreement 
of the computed dispersion curves and the densities of states, bcc caesium chloride, with the theoretical and experimental 
results found in literatures [6]       
 

 

Figure 1. The [100] phonon dispersion curves for bcc CsCl, force constant ratio R = 0.8  where the blue line indicates 
Longitudinal branch and the black and the sky blue indicates the transverse branch. 
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Figure 2. The [110] phonon dispersion curves for bcc CsCl, force constant ratio R = 0.8 where the black and blue lines 
indicates the longitudinal branch and the red, sky blue and the light green lines represents the transverse branch 
 
 
 

 
Figure 3. The [111] phonon dispersion curves for bcc CsCl, force constant ratio R = 0.8 where the sky blue and the light 
green lines represents the longitudinal branch and the black, red and the blue lines indicates the transverse branch of the 
dispersion curve. 
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Figure4. The phonon densities of state for the low-, medium-, and high-frequency polarization for a one-atom bcc lattice 
with R = 0.8. 

 
Figure 5. The total density of states of CsCl lattice with R = 0.8. 
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Figure 6. Relation between specific heat capacity cv and Temperature 
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