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Abstract 
 
The t-J model is deduced from the Hubbard model using Rayleigh-Schrodinger 

perturbation theory. The exchange is antiferromagnetic as found by other workers. 
  
  
1.0    Introduction 
 

The Hubbard model is used to study interacting electrons in narrow-band systems. The t-J model has been studied 
extensively in order to understand the various properties of the cuprate superconductors [1]. In the t-J model, u is much 
larger than the band width. The energy states will be either empty or occupied by a spin up or a spin down electron. 
Double occupation of states will be negligible. 

To obtain the t-J model, one can use canonical transformation or degenerate perturbation theory. Both methods lead 
to the same result [2]. A vast amount of literature is dedicated to studying the properties of the Hubbard model by means 
of a canonical transformation [3,4,5]. In perturbation theory, one must look for a Hamiltonian which resembles but is not 
identical to the Hamiltonian of interest. Usually the Hamiltonian of interest cannot be solved exactly but the Hamiltonian 
that resembles it can be solved exactly. Generally, the full Hilbert space is divided into two: a model space and the 
remaining space [6]. A projection operator p is to be defined which projects onto the model space. Another projection 
operator Q = 1 – P, projects onto the remaining space. An effective Hamiltonian Heff must also be defined, which acts on 

the model space only but which leads to the exact ground state energy oE .      

        
This is 
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2.0 Hubbard model and its effective t-J model. 
 

The one band Hubbard model is [7] 
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where +
σic  creates an electron at site i and ji,  are nearest neighbour. This model leads to the free particle, tight 

binding model when u = o. When t = 0, the system is fully localized and the ground state is an insulator. At half-filling, 
the model has one electron per site, and by increasing the on-site coulomb repulsion u, the ground state moves from a 
metal to a Mott-insulator. Starting from the Hubbard model, one can obtain an effective t-J model by using the Rayleigh – 
Schrodinger perturbation expansion of the effective Hamiltonian Heff. 
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where 1HHH o += , and 
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It means, therefore, that the point of view here is that the unperturbed part of the Hamiltonian is the potential energy. 

If there is no hopping, the ground state has no double occupancy. 
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ooo EE −= εδ is the energy shift in the ground state as a result of H1. And oE  is the energy of the perturbed 

system.  
The first term of the affective Hamiltonian contains only hopping between states. The potential energy in those states 

vanish as a result of the projection operator P. 
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The next term  
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Ho will act on states that are singly occupied as a result of the action of P and create a double occupied state and give 

a contribution u which is large compared to Eo. Hence  UUEo −≈− .  

 

Hence we have,  
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For only nearest neighbours 
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Each nearest neighbour bond ij  is counted only once in the sum; since we start from a state with singly occupied 

sites and come back to a state with single occupied sites ijkl ≡ survives. 

Terms from 11

1
HH

u
−  that destroy two particles on the same site are left out as they have zero matrix elements, 

we are therefore left with  
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 in Eqn. (8). 

 

We consider four spin configurations for the neighbouring sites i and j. jiandji ↓↓↑↑  do not contribute 

as the intermediate states and are prohibited by the Pauli exclusion principle. The spin configurations 

jiandji ↑↓↓↑  are acceptable as they produce non-vanishing matrix elements for the surviving terms in 

H1H1. The following are the configurations left to be considered: 
 

↓↑↓↑ jiHHji 11          (9) 

↑↓↓↑ jiHHji 11        (10) 

↓↑↑↓ jiHHji 11        (11) 

↑↓↑↓ jiHHji 11        (12) 

 

The configurations (10) and (11) are non vanishing, the matrix elements in (10) and (11) have the values u
t22−

respectively. The sum gives u
t24− . 

We have considered only the spins. The spin operators that have exactly the same matrix elements are [2]. 
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The spin operators iS
r

and jS
r

 can be shown to have the same matrix elements as uHH 11 .  
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+  is the vector of Pauli matrices 

 
Thus the t – J model is 
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The first term represents the nearest neighbour hopping between sites of the lattice allowing the electrons to 

delocalize while the second term represents the nearest neighbour exchange interaction between the spins of the electrons. 
Due to the fact that, the non vanishing interaction is between antiparallel neighbouring spins, the exchange interactions is 
antiferromagnetic.      
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Conclusion 
 

The t-J model describes electrons hopping with an amplitude of t and interacting with an antiferromagnetic exchange 

term J
u

t =






 24
. When t = 0, the t-J model is equivalent to the Heigenberg model. 

A simple and transparent process has been presented with clear assumptions in the run up to the derivation of the 
model. The Rayleigh-Schrodinger perturbation theory is size consistent that is to say that the energy increases with size of 

the system and it has been taken to the second order. It can easily be estimated that the energy of the t-J model is JtE −     

L++ 111 HRHH s  

upto second order, where oo φφ LL = . 

The wave function upto second order can be estimated also to be  

  ( )( ) L+−+= ooso PEHRP ψδψ 1  

In conclusion, we have deduced the t-J model from the one-band Hubbard model by a Rayleigh – Schrodinger 
perturbation expansion. The exchange is antiferromagnetic because the non-vanishing nearest neighbour interaction is 
that between antiparallel spins. We saw that the exchange coupling is antiferromagnetic in agreement with the findings in 
the literature. [7]. 
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