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Abstract 

 
The Gutzwiller factors are derived using Hilbert space counting techniques. The 

results compare favourably well to other results in the literature. The results are 
particularly simple for a homogenous wavefunctions with fixed particle number. 

  
  
1.0    Introduction 

The t-J model is obtained from the Hubbard model in the limit of large ratios of u/t. The Hilbert space of the t-J 
model excludes all configurations containing doubly occupied sites [1]. The Hamiltonian is expanded thus [2] 

( ) isiseff eHeH −=         (1) 

where H is the Hubbard Hamiltonian, where ise  is a unitary transformation.  
The choice made for s is [2] 

 ( )∑ −+−= ++

σ
σσσσ

ij
ijji

ij hcdada
u

t
iS        (2) 

To restrict the system to the subspace of no double occupancies the t-J Hamiltonian is written  

 G
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GJt PHPH =−         (3) 

where ( )∑ ↓↑−=
i

iiG nnP 1         (4) 

is the Gutzwiller projection operator. 
The t-J model Hamiltonian becomes [1] 
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This model describes the low energy subspace compared to the Hubbard model Hamiltonian. 
The projected BCS wave functions are assumed to be the solution of the t-J model [3] 

 BCSPP GN=ψ         (6) 

where PG projects out double occupancies and PN fixes the particle number to N. These projected wave functions have 
been used to study Mott-Hubbard metal insulation transition [4]. 

To calculate the variational energy of a projected state, the expectation value of the form [2] 

oGGo

oGGo

PP

PHP

ψψ
ψψ

        (7) 

must be considered, where oψ  is any wave function with no restriction in the number of double occupancies. To 

evaluate the expectation value in (7) approximate analytical calculations can be performed based on the Gutzwiller 
approximation. 
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2.0 Gutzwiller Approximation  

The Hilbert space counting arguments are used in this technique. This Gutzwiller factor is approximated thus 

o

og
ψ

ψ

0̂

0̂
≈   

where oGP ψψ = . The ratio in (8) is determined by calculating the probability of occupancy at site i. Thus one 

calculates the probabilities for a site to be empty, singly occupied with spin σ and doubly occupied respectively. The 
Hilbert space restrictions are shown in Table 1 [2]. 

Table 1: Probability for different occupancies on site i in oand ψψ   

Occupancy on site i Probabilities  

        oψψ  
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3.0 Evaluation of the Gutzwiller factors for the t-J Hamiltonian  
The t-J Hamiltonian is [1] 

( )∑ ′
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where ijutJ ,4 2=  are pairs of neighbour sites. This low energy model of the Hubbard Hamiltonian does not allow 

for double occupancies on a site. When the filling is half, each site has only one electron and the hopping of electrons is 
frozen because hopping will result in double occupancies of sites. Due to this, the kinetic energy term disappears and the 
t-J model reduces to the antiferromangnetic Heisenberg model [5] 
For the first term of the t-J model, the Gutzwiller factor is  
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To obtain equation (11), projected operators ( )σ−− in̂1  and ( ) σσ jj cn −− ˆ1  are used. 
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To obtain equation (12) from equation (11), table 1 is used. The probability for ( ) ( ) σσσσ jjii cncn −
+

− −− ˆ1ˆ1 in the states 

oand ψψ  are considered.  
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Now  ψσσ ji cc +  

 ( ) ( ) ψσσσσ jjii cncn −
+

− −−= 11  

 ( ) ( ) ojjiit cncng ψσσσσ −
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−− −−= oo 11~  
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Hence 
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For a homogenous wavefunctions with fixed particle number and spin symmetry [2],  
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For the magnetic case  
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Similarly, the Gutzwiller factors for the operator σσ jj cc+  are identical to that of the operator σσ ji cc + . The next 

term in the t-J model is the operator (super exchange interaction) 

 ji SS
rr
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In the magnetic limit [2]  
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The last term in the t-J model is the operator  

 4ˆˆ ji
ij
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The Gutzwiller factor is defined by 

ojiji nngnn ψψ ˆˆˆˆ =    

The process ji nn ˆˆ  requires a spin on site i and a spin on site j. In the state ψ , the probability of occupancy is: 
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in the numerator of the ratio below 
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In the non-magnetic limit 2nn =o

σ  
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4.0 Discussion and Conclusion  
In this paper, we have obtain the following “Gultzwiller renormalization factors for the t – J, model:  

For the term ,σσ ji aa +
 the Gultzwiller renormalization factor for the non-magnetic case is 

21

1

n

n

−
− where n is the particle 

density, and the Gultzwiller renormalization factor for the magnetic case is 
nnn

n
oo
↓↑−

−
21

1 , where oo nandn ↓↑  are from 

the same site, n is the particle density after projection and no is particle density before projection. Similar results hold for 
the Hermitian conjugate.   

For the term ji SS
rr

(superexchange interaction), the Gutzwiller renormalization factors are 
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n
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 for the magnetic and non magnetic cases respectively. n is the particle density after 

projection and no is the particle density before projection.  

Finally, the term 4ˆˆ ji nn  has the Gutzwiller factors  
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respectively. n is the particle density after projection and no is the particle density before projection.   
In [6], the results obtained for the t-J model are similar. The Gutzwiller factors depend on the densities at the sites i 

and j. However, the intersite coulomb interaction is not renormalized in [6]. These results are also in agreement with the 
results in [7] and [8]. The results in the paper are also in considerable agreement with results in [9]. As pointed out in [9], 
the Gutzwiller renormalization factors may change considerably in the case of inhomogeneous charge distribution as the 
local density may change before and after projection. 

The result obtained here, are in exact agreement with [10]. The use of Gutzwiller rormalization factors can lead to the 
estimation of the energies of the t-J model in the projected states. The Gutzwiller approximation is used to relate the 
expectation values of the kinetic energies in the projected state to the corresponding expectation values in the unprojected 
state.  

The use of Gutzwiller factors is an alternative approach to solution of the projected wavefunctions. The technique 
compares favourably to the use of Variational Monte Carlo [11, 12, 13] and renormalized field theory [7]. 
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