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Abstract

Strong correlation of interacting electrons has been widely studied under the
single band Hubbard model with the aid of several techniques. These numerous studies
have been carried out at different band filling. In this work, the ground state properties
in the half filled band in one dimension are studied employing a simplified
modification of the Lanczos technique with particular interest in the energies and the
wave functions. Several interaction strengths are considered both in the positive u limit
and negative u limit and the interesting case of no interaction.

1.0 Introduction

In contemporary high temperature superconductivt, studies of the behavior of strongly correlagdettronic
systems remain a central problem. Years of intshs#ies has shown that the required theoreticlis skid tools to deal
effectively with strongly correlated electron syste are still lacking. This search for a theoretieaplanation has
generated an immense number of papers. There e eviews which attempt to gather and put in peEatpe this large
amount of work [1]. These reviews make it cleart ttheere is still much work to be done, and refldw generally
inconclusive state of the research in this areaspide a lack of overall explanation, a large amoainexperimental
information has been gathered.

The defining feature of all high-Tc superconductsrthe presence of copper oxide planes, whiclsgparated from
each other by layers of other atoms. This commairfamomagnetic order is present at low tempemtamd low doping.
Upon doping, long range spin order is destroyedijngi way first to a pseudo gap phase and eventudiéy
superconducting phase. At higher temperatures thase that allow for superconductivity, a non-Feliguid state
appears. Eventually, at all temperatures, the systdtles into a Fermi-liquid state.

For theoretical studies, physicists turn to modalritonians which are defined to describe a systérfermions
residing on a lattice. The Hamiltonian togetherwifte lattice comprises a system which attempisitoic the properties
of the high-Tc superconductors. The lattice usedsisally a simplified version of the structure bftmaterial; for
instance, since the copper oxide planes of theatepiform a square lattice, a number of researchsnmnsiders these
lattices [2, 3, 4, 5]. The key property that mdstdges strive to explain is Cooper pairing, andrfechanism causing the
pairs to form. Some reviews focusing on the quastiothe pairing mechanism can be found in [6]tAvas known prior
to the discovery of high<Tsuperconductor that singlet-pairing was enhanoetthé strong on-site coupling limit of the
Hubbard model [8] and that this led to an effectactive interaction between anti-parallel spnsnearest neighbor
sites. This effective attractive interaction is Kag to the Cooper pairing problem [9].

In part and because of this, Anderson suggestedphepriate model to study the cuprates is thelyéalf-filled
two-dimensional Hubbard model, with moderately éammn-site repulsion u, and anti-ferromagnetic ergeaJ [10].
Following this suggestion, extensive studies onHhbbard and t—J models were carried out. Manyhe$é¢ studies focus
on the large-u limit of the Hubbard model [11, 13], where at half-filling it becomes equivalentttee Heisenberg
model, a result that had been known for some tBné&4].
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It is generally agreed that both the Hubbard andltmodels describe the normal state featureseotprates [7].
For instance, anti-ferromagnetic order was als@ofesl in the Heisenberg model [15, 16] using botmtd Carlo (MC)
and renormalization group (RG) methods. The supehecting state, however, has not been describatidse models;
specifically, evidence of Cooper pair formation med been conclusive. Several studies have appedatiie problem
from different theoretical perspectives that firmbficlusive” evidence of pairing, be it exact diagioration [17, 18, 19,
20, 21], Monte Carlo [3, 22, 12, 21], or simply tyect analysis [23, 24]. However, there are ositadies which either
find no evidence of pair formation, or refute theim that the t — J or Hubbard models superconduatl [5, 2, 25].

Attempting to describe the interactions of manyetn systems is very complicated, and often tis¢oriurn to
simplified models which retain some of the impottd@atures of the system while ignoring other, Holbe less
important features. Perhaps the simplest modehdhteracting many-electron system is the Hubbaodleh[26]. The
Hubbard model uses tight-binding arguments thatoéxihe fact that the electron density in a d-barashsition metal is
concentrated close to the nuclei and sparse indegtwin effect, one can view the electrons as irggidn a particular
atom. The location of an atom in the material fenred to as a lattice site, or simply a site, vehatr most two electrons
may occupy any single site provided they have oippapin. The electrons may “hop” between neareghbour sites,
contributing an off-diagonal element, —t, to thentiléonian. In addition, in the Hubbard model elecis interact only
through Coulombic repulsion when residing on thmeasite. The hopping constitutes the kinetic engrgst of the
Hamiltonian. By itself it is sometimes called tHepping term,” which using occupation number foiisralis given by

= T c. T c. (€N
HHOP t<i,jz>1a(ci,acj,a+Cj,aC|,a)

where i and j label the sites, andabels the spin. The brackets, <,>, indicate i $s performed over nearest
neighbour sites only, with each pair of sites ceyinted once. The Coulombic interaction betweeat®eas comprises
the potential energy of the Hamiltonian. In its ingsneral form it is given by

Vee=u)n. n +>V,. .nn. ()
R A IR T

where i and j run over the lattice sites. The fiestn, or u-term, considers only on-site interatdioThe second term,

or V -term, considers all other interactions, @andjeneral,

Viij ~ ﬁ where ris the position of the ith atom. u and V are egesgales which define the strength of the

interaction. If u or V is positive (hegative) thespective interaction is repulsive (attractive)e THubbard model only
considers repulsive, on-site interactions and sly ¢ime u-term is retained. Finally, the nearestghbour-hopping
Hubbard model is given by,
_ T T + 3
Huu = t<i’jz>'a(ci,acj’a + Cj,aci,a) u%ni’T ni’l 3)

Having made a choice of which electronic model trkwvith, the method or technique that should bglied to the
study of this model becomes another challengehisf is not properly chosen, it limits the extenttioé work and the
accuracy of results obtained. To check this, ge#fart was made in the review work of [1] to preiseeveral techniques
that have been applied in the extensive studygfiliricorrelated electron systems using the Hubbawdel. One of the
problems encountered is that there are no wellrobbed analytical techniques to analyze them. Adaoay to Dagotto’s
review paper, two methods were found to be selfsistent these are the mean free theories and thatioaal
approximations, but there were no standard waysdge if they actually describe the propertieshaf ground state or if
they converge to excited states. Of these aforaom@d techniques, the exact method provide thetesalution,
however, because of the exponential growth of tlikelrt space with the lattice size, exact calcolatbecomes
inadequate to handle relatively large clustersnfzfeome extrapolations were done, small sizeesystare inadequate in
describing the phase transition region in the nwowpical limit. This fueled the need to look for adequate
approximation method that can produce near accuestdts. It is in the light of this that a simpteodification of the
Lanczos algorithm was adopted to extract the desmfermation from the system operated on by thenHtanian. Hence
for this research paper, a simplified modificatioh the Lanczos technique is employed. The simplifapproach
developed in this work reveals a clear cut fornfalaobtaining the improved ground state energy wagle function by
every step of iteration taken. Values are inputtghually into the formula and results were obtaiméithout heavy
numerical involvement. In the modified Lanczos tEqge presented by Dagotto, two higher powers of it is <H>
and <H> must be obtained before the iteration to obtairext improved ground state energy and waveifumcan be
obtained. In the method presented here, just omepof <H>, that is <> is needed for the next iteration to be carried
out. Result obtained from the iterations shows thate is easy access to obtaining some of thendigah ground state
properties like the correlation functions. Hencoe éiim of this research is to investigate to a lhegkl of accuracy, the
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low energy properties like the ground state energiel wave functions at half filling and at vaganteraction strengths
in the large u (u>0) and small u (u<0) limit. Prehary result for the four site problem has beegspnted by [27].

Generally, the plan of this research is as follathis, method is described in section Il. In sectibnt is applied to
finite sized lattices in the half filled band ofetlone-dimensional Hubbard model and the resultsimdd are presented,
discussed and extrapolated to the bulk limit pectebn and comparison is made with existing res#ifitsal comments
and conclusions are made in section IV.

2.0 The Method

In this section, the modified Lanczos techniqueapglied in this work will be described. As in thearedard Lanczos
technique and the modified Lanczos method, the ocethquires the selection of an initial trial vercktpn> (normalized

to one) and n takes values from OHf acts on|(0n> the result can be written as

{g.H |o.) ~
H n n + n (4)
0= (@n |90) 2.+ [0:)

én> is a new state 0rthogona||%>. Since|¢)n> is normalized, Eqn. (4) becomes

=\ _ (Hla)~(@lH|a)4)

Where

%) bn ©)
The constant bensures thalt¢7n> is normalized.
From Eqn. (5), itis observe[:i that; J

~ 1= _l@lH7e) - (@H @) ]

@)= b? - (6)
Hence, Eqn. (6) gives

0= @) (@ Hla) ] 2
Having redefined the parameters used in Eqn (€garitsimply be put as

_[p _(y 22

bn _[:Bn (H ) ] (10)

Also,
3 —
(@,[H%l@) =V, (11)

~3H,5, +2H
22
2(ﬁn H n ) (12)
a,=f, (12 +1)"
from Egns. (9), (10) and (13) the improved ener@y e obtained using Egn. (14) below
0,,=H, +b.a, (14)

Wherel],,, is the improved ground state energy which is usedhie next iteration.

(13)

Also, using| ¢"> Equations (5) and (13), it can easily be shawven the new trial wave vector for the next iterati®
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1 a ~
)= A + n A 15
) = o) o) as)
where
1
- = An
(1+ al )1/2 (16)
a,  _ p
ra2)® "7 a7
Eqgn. (16) and (17) are the weights associated tivéhmproved wave function |%+1>
0| @) = Aol @) + | 1) a8

(I and|¢n+1> are better approximationslﬁb (true ground state energy) af@o> (true ground state wave function)
than [, and|¢{1> respectively.

The method can be iterated by considerliml> as a new initial trial vector and repeating thepstfrom Eqgn. (4) to

(18). In each iteration, the orthogonal pa1r¢1>(,‘(z> ), (| ¢,>‘g{>) etc are normalized.

3.0 (a) Two Electrons on Two Sites

In this section, the modified Lanczos algorithnajgplied to the case of two electrons on two sitiéls periodic boundary
condition. The relevant electronic states of tgistam are:

D=trac)[2)=]21.21)[3)=11.21)4)=[11.21) (19)

Consider the normalized initial trial vecthﬂ) to be

) = %[ﬂ% 2)] =) (20)

Eqgn. (20) is the linear combination of translatidnaariant states.
When the Hubbard Hamiltonian given in Egn.

1 (3) acts od¢6>
H|¢O>:ﬁ[—2t|3>+2t|4>+U|1>+U|2>] 1)

When Eqgns. (20) and (21) are combinegljsbbtained as given in Eqn. (22)

1(1
H,=(g|H|g)=——| —2U |=U 22
O @
when the Hamiltonian acts on Eqn. (21), Eqn. (2i)be obtained as;
W)= [+ 2]+ [0+ 2]+ 22 [ 4- 3] 2
J2 J2 V2
normalizing the result obtained in Eqn. (23) pragkf as given in Eqn. (24)
5= (@M >_4t2[2j+U2£2j_4t2+U2 ”
TR R 2 2\

From Eqn. (23) and (24), the normalizing factooli¢ained as
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b = [at2 +U?-u?|? =2t

using Eqgns. (21), (22) and (25), the orthogonakstave function is obtained as;

~ 1
=—|4)-|3)|=|2
@)= —4)-13]=12)
Also, when the Hamiltonian acts on Eqn. (23), itdraes

R e R e TR

Hence on normalizing the result of Eqn. (27)
=(¢o|H’|) =80 +U°

but

-3H,5, +2H, 3

( s He)”

Hence, applying Eqgns. (22), (24) and (28) in EGB) ill yield
_-u
4
using Eqgn. (30)q, is obtained to be

~U -y16:2 +U?

from Eqgns. (22), (25) and (31) in the relation
How=H,o +bya,

a, =

the improved ground state energy gives

1

2U—\/U2+16t2]

0,==

In the basi# %> and‘ q~130> the corresponding improved ground state wave fonds

@)= 2518 +12]+ 42 [4)-J3)
-f
1 {«/Mm}

Mo~ 2| a0
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(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34a)

(34b)

Eqgns. (34a) and (34b) are obtained by putting E2fh). into Eqns. (20) and (26) respectively. Itlserved in this section
that applying the linear combination of translaibmvariant states reduces the number of iterati@guired to obtain
the ground state energy and wave function to ostedu of the conventional four iterations corresiog to the number
of states implying that the rate of convergencéhéoground state is affected by the choice ofahttial wave vector.
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(B)  Four Electrons on Four Sites

As another example, the ground state energy anc vitmwction will be obtained for four electrons ayuf sites. The
antiferromagnetic states can be obtained usinéptineula;

((N_%)!%!) (35)
therefore
(=22 = 36 states (36)

212!
To obtain the new basis state vectors that wiluoedthe size of the Hilbert space from 36 statehriee, we will proceed

thus.
2200 =|2200 +|0220 +|0022 +| 2002
12020 =| 2020 +|0202

Where?2 indicates that there are two electrons occupyirag site and the four items in each bracket repteshe four
sites and th® shows the sites that are unoccupied. Doubly oeclugites account for 6 states out of the 36 statdshis

corresponds to one new basis state which is derhmd;ﬂ) in Equation (40). When one site is doubly occumed two
other sites are singly occupied, the following @léained

2110 =|2110 +|0212) +|1021 +[1102)

2011 =|2011 +|1203 +|1120 +|0112) (38)

2101 =|2101 +]1210 +|0124) +|1012)
Also 2 indicate that a site is doubly occupiddndicate that a site is singly occupied whilendicate that a site is empty.

Taking the spin orientation into consideration, 2dtes are accounted for and this correspondsdomew basis state
denoted b)4 2’> in Equation (40). The last separation is whenitdksare singly occupied and it is described by

1113 (39)
When the spin orientations for the four electrorestaken into consideration, it accounts for 6estatnd corresponds to
one new basis state denoted |kﬁy> in Equation (40). Hence the 36 states have beequatiely taken care of. Having
understood the above explanation, the new bagesstae
|1'> = | 220() + | OZZQ + |0023 + | 2003 + | ZOZQ + |0203
|2'> = |2110> + |021:I> + |102:I> + |1102> + | 201]> + |12OZI>
+ |1120> + |0112> + | 210]} + |1210> + |012:I> + |1012>

(37)

(40)
[3)=[1113
When the Hubbard Hamiltonian given in Equationi§3pplied to these new basis states, the followiegobtained
H|1) = 2u[1) - 21| 2
H|2')=-81) + (u-41)|2) - 83)
H|3)=-2((2)
At this point, the modification of the Lanczos taijue is applied and the iterations are carrieduntit the ground state
energy is obtained. As an example, the first iterawvill be thoroughly treated, let the initial moalized trial vector be

10 _ '
‘¢b>‘ﬁ|1> = AYfT) (41)
When the Hamiltonian acts on Eqn. (41) and thelresumalizedH, is obtained in Eqn. (42) as
HO = 6ABl (42)

the parameters generated are defined as
Bl = 2UA1, Bz = 'ZtAl
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when the Hamiltonian acts twice on Eqn.(41) andnadized,f,is obtained as
B, =6AC, (43)
the parameters generated are defined as

Where G= 2uB, — 8tB,, C, = -2tB; + (u-4t)B,
Using Egns. (42) and (43), the normalizing factar first iteration is defined in Eqn. (44)

— _ 2y1/2
bO - (BO H 0 ) (44)
Subtracting the normalized initial trial wave vectiom the wave vector generated after the Hamidtoras acted gives
the new orthogonal states as Eqn. (45)

- — I + !
@) =Dylt) +D,[2) )
the parameters generated are defined as
D, = —Bl —H OAi D. = i
1 bO 4 2 bo

when the Hamiltonian acts the third time on Eqi) @nd the result normalizegh,will be obtained as given in Eqn. (46)

Vo= 6A1 (Zucl _8tC2)

(46)
with all the parameters fdg already defined is simply written as
~3H,B, +2H;
fo - yO 0:30 — 0 (47)
2
2(,80 —H, )
from Eqn (47)ppis defined as
a, = f,- (12 +1)” (48)
using Eqns (42), (44) and (48), the improved enegyparing to the actual ground state energy isrgim Eqn (49) as
0= H, +bya, (49)

the wave function corresponding to the energyinbthin Eqn. (49) is obtained by inserting Eqnd)(445) and (48)
into Egn. (15) given above yields;

o\ Ataoby o d0Dr

‘¢b+1>“¢1>_ ]j2|1>+ ]j2|2>

[1+ ag j (1+ acz)]

Equations (49) and (50) are better approximatiorthé true ground state energy and wave functian #qns. (41) and

(42). It is observed that after five iterationse ttesult obtained becomes repetitive showing tmatiawest energy and

wave function has been obtained and that the syiséenconverged.

Results from the ground state energy equation obdiain Eqns. (32) and (49) for interaction strerafthy = -5.00 —
5.00 is presented in Table 1 and 3 respectivelye $&cond and the third column of Table 1 shows tiatresult
accurately reproduces those obtained using exaittati¢column 2) and correlated variational approgetiumn 3) for
two sites while the last column in Table 3 showe tbhnverged ground state energy for four siteis. dbserved that at
exactly one electron per site, the energy changedes the extreme strong u (u = 5.00) limit in thisrk and the
extreme weak u (u = -5.00) limit in this work, saetly AE/t = -5.00 for two sites andE/t = -10.00 for four sites. It is
also noteworthy that as the interaction strengémgles per unit (5.00 to 4.00 ..... ), the ratio of gnexhange gradually
increases as the u/t decreases and almost becamésvalue between u/t = -4.00 and u/t = -5.0GsTdmange in trend is
even more evident in Fig. 1 (the graph of E/t venstt which was plotted from values obtained inl&a. In this figure,
it is noted that the space between the points are alustered for u/t being positive than for w@gative. This shows that
the interaction energy at the ground state in tbakicoupling regime (u/t < 0) reduces more rapidgn in the strong
coupling limit (u/t > 0). Results in the strong eding limit shows that anti-ferromagnetism is s&brhe drop in energy
value in Figs. 1 and 3 for negative u/t supporésgtoposition that the electrons prefer to stagtiogr in the weak

(50)
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coupling limit. On the contrary, in the strong cbog limit (positive u/t), the drop in energy isvary slight parabola
indicating that the electrons prefer to stay inrteangly occupied sites. Figs. 2 and 4 which is ot of the weights of
the ground state wave function versus the intesactrength shows a very interesting trend, theets only intersect
at the point where u/t = 0. The intersect in Figand 4 and the value in Tables 2 and 4 for u &l tis that the weights
of the wave functions are the same both for the amd four electrons being on the same site anthttwo and four
electrons occupying separate sites showing thiaalé&filling, the electrons have equal probabilitifoccupying any site.
Using the two site result as a case studyithreFig. 2 represented by the dotted line is theghteof the wave function
for the two electrons on the same site and it seoked that at u = -5.00, the weight is at a pdak@194 while at u =
5.00, the weight is 0.0326. The higher value shavwgseater probability of finding the electron attite. This clearly
shows that at positive u the electrons preferdyg apart. On the other handin Fig. 2 represents the case of one electron
per site and for u = -5.00, the weight of the whwrection is 0.1315 while at u = 5.00 it goes toealp of 0. 7483 showing
that the probability of finding the electron heseeven higher. It is interesting to note that ig. B, series 2 representing
two on site electrons and two inter-site electroage a fairly stable and equal probability of bedrmgupied both at u < 0
and u > 0 limit and it has its highest probabitifyoccupation at u = 0. So for positive u, the &lmts prefer to stay apart.
It can be safely concluded from results beforehas $trongly correlated electron system is betimaussed in the positive
u/t regime. In Fig. 2, it is observed that as ofiréases or decreases, the change in the weigheoflave function
stabilizes but this is not the case in Fig. 4 beeahe electrons have more sites to hop to henmending more energy.
This displays the limitation in the number of sitessidered in this work. It is also noteworthyttivdaen the weights of
the wave function for both the on-site and therisite arrangement are added it gives a value dh~Tlable 2 and adds
up to ~ 0.5 in Table 4. When the result in this kvizr extrapolated to bulk limit at energy per sttee result stands at a
value of 1.0000. This result agrees well with thiatiained by [28] where they worked on the Heiseglmeodel in the half
filled band for up to 24 sites using the modifieainczos technique. It is observed from their woek ts the number of
sites increases, the energy per site stabilizas @verage value of about -0.8862.

Table 1 Ground-state energy E/t for two electrons on two sites as a function u/t (at
t=1).
Interaction strength Energy (E/t)
(uft)
Modified Lanczos Exact method Variational
method calculation
(This work)
5.00 -0.7016 -0.7016 -0.7016
4.00 -0.8284 -0.8284 -0.8284
3.00 -1.0000 -1.0000 -1.0000
2.00 -1.2361 -1.2361 -1.2361
1.00 -1.5616 -1.5616 -1.5616
0.00 -2.0000 -2.0000 -2.0000
-1.00 -2.5616 -2.5616 -2.5616
-2.00 -3.2361 -3.2361 -3.2361
-3.00 -4.0000 -4.0000 -4.0000
-4.00 -4.8284 -4.8284 -4.8284
-5.00 -5.7016 -5.7016 -5.7016
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// s »

Figure 1: The ground state energy E/t versus the intenagicength u/t for two electrons on two sites

Table 2:Ground state wave functioyd) for two electrons on two sites at u/t = -5.0%100 the ket notation is
as defined on Eqgn. 20 and 26)

INTERACTION | wAVE WEIGHT DESCRIBING
STRENGTH | FUNCTIONS WAVE FUNCTION
u/t
1ST
5.00 1) 0.0326
12 0.7483
4.00 1) 0.0417
2 0.7488
3.00 1) 0.1359
2 0.7359
2.00 1) 0.2507
2 0.6979
1.00 1) 0.3787
2 0.6213
0.00 1) 0.5000
2 0.5000
-1.00 17') 0.5909
2 0.3484
-2.00 17') 0.6419
2 0.1947
-3.00 17') 0.6606
2 0.0606
-4.00 17') 0.6597
2 0.0474
-5.00 17') 0.6494
2 0.1315
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Figure 2: Weight of ground state wave functiopg] versus the interaction strength u/t for two eleas on two sites

Table 3: Ground state energy (E/t) for four electrons amr feites as a function u/t (at t=1).

u/t ENERGY (E/)

ITERATIONS

1ST 2ND 3RD 4TH 5TH

5.00 -0.5208 | -4.0083 | -4.0682 |-4.0692 | -4.0692
4.00 -1.6568 | -4.6157 | -4.6795 -4.6803|  -4.6804
3.00 28151 | -5.3126 | -5.3765 -5.3788|  -5.3800
2.00 -4.0000 | -6.0988 | -6.1661 -6.1677|  -6.1677
1.00 52170 | -6.9725 | -7.0397 -7.0417|  -7.0417
0.00 -6.4721 | -7.9318 | -7.9974 -8.0000|  -8.0000
-1.00 -7.7720 | -8.9762 | -9.0388 -9.0416]  -9.0417
-2.00 91231 | -10.1066 | -10.1645 | -10.1676] -10.1677
-3.00 -10.5311 | -11.3251| -11.3757| -11.3798  -11.380p
-4.00 -12.0000 | -12.6332| -12.6773| -12.680L  -12.6808
-5.00 -13.5311 | -14.0306| -14.0665| -14.069D  -14.069p
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Figure 3: The ground state energy E/t versus the interacti@ngth u/t for four electrons on four sites

Table 4: Ground state wave function for four electrons our fsites at u/t = -5.00 to 5.00 (the ket notat®as defined in

J of NAMP

Eqgn. (40))
INTERACTION WAVE
STRENGTH  uit FUNCTION WEIGHTS OF WAVE FUNCTION
1ST 2ND 3QD 4TH 5TH 6TH
5.00 1’) 0.1451| 0.1061 0.0822 0.0814 0.0811 0.0812
2’> 0.1908| 0.1399 0.1438 0.1426 0.1427 0.1427
3’) 0.2785| 0.2779 0.2805 0.2805 0.2805
4.00 1’) 0.1562| 0.1220 0.0966 0.09%6 0.0952 0.0952
2’> 0.1886| 0.14724 0.1521L 0.1506 0.1509 0.1509
3’) 0.2552| 0.2546 0.2579 0.2579 0.2579
3.00 1’) 0.1687| 0.1391 0.1126 0.1113 0.1109 0.1108
2’> 0.1859| 0.1533 0.158p 0.1576 0.1577 0.1577
3’) 0.2309| 0.2303 0.2344 0.2344 0.2344
2.00 1’) 0.1828| 0.1574 0.1300 0.1287 0.1280 0.1280
2’> 0.1828| 0.1574 0.1638 0.1625 0.1627 0.1626
3’) 0.2066| 0.2060 0.2109 0.2108 0.2109
1.00 1’) 0.1979| 0.1769 0.148P 0.1475 0.1466 0.1466
2’> 0.1785| 0.1594 0.166f 0.1655 0.1657 0.1657
3’) 0.1831| 0.1826 0.1881 0.1830 0.1882
0.00 1’) 0.2146| 0.1973 0.1692 0.167Y8 0.1668 0.1667
2’> 0.1736| 0.1594 0.1676 0.1664 0.1667 0.1667
3’) 0.1610| 0.1605 0.1665 0.1664 0.1667
-1.00 1’) 0.2325| 0.2184 0.190p 0.1896 0.1883 0.1883
2’> 0.1678| 0.1574 0.1668 0.165%3 0.1657 0.1656
3’) 0.1404| 0.1400 0.1463 0.1463 0.1466
-2.00 1’) 0.2512| 0.2398 0.2138 0.2125 0.2111 0.2110
2’> 0.1609| 0.1534 0.1630 0.1622 0.1627 0.1626
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3) 0.1216| 0.1212 0.1277 0.1276 0.1279
-3.00 1) 0.2702| 0.2612 0.2372 0.2361 0.2346 0.2345
2') 0.1530| 0.1479 0.1578 0.1571 0.1577 0.1576
3) 0.1045| 0.1042 0.11056 0.1104 0.1108
-4.00 1) 0.2887| 0.2817 0.260b 0.2595 0.2581 0.2580
2') 0.1443| 0.1409 0.1508 0.1503 0.1509 0.1509
3) 0.0892| 0.0890 0.0948 0.0948 0.0952
-5.00 1) 0.3061| 0.3008 0.282F 0.2819 0.2806 0.2806
2') 0.1351] 0.1328 0.1424 0.1420 0.14P5 0.1426
3) 0.0757| 0.0758 0.0808 0.0807 0.0811
0.3
—o—Seriesl
——Series2
—a— Series3
5
(7]
=
[-T]
2
0.05 =
-6 -4 2 St 2 4 6
Figure 4 Weights of the ground state wave functionys) versus the interaction strength
u/t for four electrons on four sites at u/t = -5.00 to 5.00
Conclusion

In this paper, the single band Hubbard model has lamalyzed at half filling using a simplified mficition of the
Lanczos technique. Accurate results were obtainegriecisely two and four site problems. Regardhegground state
energy and wave function, as far as was analyzéisnwork, there is no evidence of an anomalousbier. Based on
the variational theory that says the lower the gnéhe better the wavefunction, the result obtaiasdhe ground state
energy for four sites in this work is a better gyethan that obtained by (27).

Again, the number of iteration required to obtdia ground state properties treated was greatlyceetiby using the

linear combination of translational invariant statand this reduced the number of iterations byctofaf approximately
four. The method presented here converges fastar the usual Lanczos technique and requires lesseneal
calculation.

It is hoped that this work will be extended to Erg@nd more realistic sites based on the explidit faundational
work that has been presented here. We also hopredbthe effect of energy gap and correlation tions in the half-
filled band in future work.
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