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Abstract 

 
The Hamiltonian of the one-dimensional electron gas is not exactly solvable. 

Tomonaga upon recognizing that the excitations of the electron gas are approximately 
bosons, although the elementary particles, the electrons, are fermions, went on to 
assume that the excitations are exactly bosons. The resulting model, the Tomonaga 
model immediately becomes exactly solvable. This preliminary work reviews briefly 
what has been done so far with the Tomonaga model; details the Tomonaga model and 
all the equations it entails, as a starting point for subsequent studies. There is the 
likelihood that the model may, in the not too distant future, become as important as the 
Hubbard model.   

  
  

1.0    Introduction 

The Tomonaga model proposed by Sin-itiro Tomonaga in June 29, 1950 describes a one-dimensional electron gas. 
The model examines the Hamiltonian of the one-dimensional electron gas and makes some approximations on it, so as to 
render the resulting Hamiltonian exactly solvable. 

This model has been useful in several kinds of problems. First, there are organic solids such as tetrathiofulvalinium-
tetracyano-quinodimethane (TTF-TCNQ) whose conductivity is thought to be largely one-dimensional [1]. The 
Tomonaga model has played a role in the interpretation of electrical conductivity in these materials [2]. Secondly, in 
impurity problems, or X-ray absorption problems, the response of the electron gas to the central impulse can be factored 
into spherical harmonics associated with different angular momentum states l. Each angular momentum channel l then 
becomes a one-dimensional electron gas to which one may apply the Tomonaga model. Recently, semiconductor 
nanotechnology permits the construction of semiconductor channels which acts as one-dimensional conductors. The 
Tomonaga model is used in the theory of these systems. Single wall carbon nanotubes are other examples of one-
dimensional conductors.  

Tomonaga presented the exact solution for the long-wavelength density response of a system of interacting fermions 
in one spatial dimension. In order to 

simplify the problem; he studied the high-density limit where the range of the interaction is much larger than the 
inter-particle distance [3]. 

The effects of the Coulomb interaction of electrons in metals can only be described approximately. With the progress 
in producing artificial low dimensional structures the theoretical work on one-dimensional interacting fermions has 
gained importance. Special features of the spectrum of low energy excitations in one dimension allow exact solutions of 
models of interacting fermions. The main idea can already be understood by working with noninteracting fermions, which 
have the same spectrum of excitations as a harmonic chain. The method of bosonization is the key concept to understand 
ground state properties and the spectrum of excited states with low excitation energy also for interacting fermions [4]. 

The homogeneous electron liquid (HEL), continues to be of interest both in three dimensions (3D) [5] and in systems 
of reduced dimensionality. Unlike their higher-dimensional counterparts, 1D interacting fermion systems are not Fermi 
liquids; instead they exhibit the low-energy phenomenology common to many 1D fermion systems, often referred to as 
Tomonaga-Luttinger (TL) liquids [6].     
 
 
 
*Corresponding author: Nenuwe O. N., E-mail: nelso_1@yahoo.com, Tel. +2348037295834 

 
Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 205 – 212           



206 

 

The Tomonaga Model.         Nenuwe, Babalola, and Idiodi        J of NAMP 
 

Any TL liquid is completely specified by four parameters: the charge and spin collective excitation velocities vρ and 
vσ, and the correlation exponents kρ and kσ. In the absence of interactions vρ and vσ reduce to the Fermi velocity, vF, and the 
correlation exponents are equal to 1 [7]. 

 The Tomonaga model, like the Hubbard model, is likely to enjoy a lot of applications in the future. In view of 
this, this work will describe in detail the Tomonaga model and all the equations it entails. Some concrete applications of 
the model will be discussed in a subsequent report.      
 

2.0 Methodology  
The original model of Tomonaga (1950) discusses the following Hamiltonian for the one- dimensional interacting 
electron gas [8]: 
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Where L is length of the one-dimensional system, Fv  is Fermi velocity of the particles which are assumed to have a 

linear dispersion relation, s = ±1, is the spin, k is the possible electron states, )(kρ  is electron density operator, Vk is 

electron-electron interaction term and +ksa
 
and  ksa  are the creation and destruction operators of electrons in site k and 

spin s respectively.  

The basic step in the Tomonaga model is to divide the density operator into two terms, )(1 kρ  and )(2 kρ , with 
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The density operator commutes with any other density operator )(kρ .  

We now examine the commutation relations [9]: 
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Summing over s′ and p′, we obtain 
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An important special case is k' = -k 
Then, equation (2.8) becomes 
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The operator np,s is replaced by its average in the ground state of the free-particle system 
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The commutation relation (2.10) can be written for 
F

kk 2<   as  
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The analogous results are included for the other commutators, (2.14) and (2.15), which can be derived in the same way as 
shown above. The Tomanaga model assumes that those density operators obey the exact commutation relations of  
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The relations (2.16) constitute the central approximation of the Tomonaga model. The commutation relations are not 
exact, since the commutators give operators, as in (2.10). However, exact results are obtained when taking the expectation 
value of the commutation relations [10] as shown in eqn.(2.17) 
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It is convenient to express the density operators )( kj ±ρ in terms of creation and destruction operators for 

bosons. These definitions are given in (2.18), where the symbol k is always positive: 
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          (2.19) 

 

The operators 1ρ  always commute with 2ρ . The choice (2.18) satisfies the approximate commutation relation (2.16). 

The 2nd term in the Hamiltonian (2.1) may be written in terms of these boson operators: 
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On substituting (2.20) into the 2nd term of (2.1), we obtain 
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The electron-electron interaction term has been recast into an interaction between the boson excitation of the electron gas. 
The 1st term in the Hamiltonian (2.1) is the particle kinetic energy. We shall now express it in terms of boson 

coordinates.  
Let Ho be the kinetic energy term, 
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Its commutator with )(1 kρ  is 
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Substituting (2.18) into (2.24) and simplifying, we obtain
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Next, considering the commutator of H0 with  2ρ  , we obtain 
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Both of these approximate commutators are satisfied with the following choice for Ho  
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The one-dimensional electron gas (2.1) has been recast into the boson Hamiltonian (2.28), which is exactly solvable [11]. 
 We now solve equation (2.28) exactly by changing to a coordinate representation for the boson operators: 
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In this representation the Hamiltonian is written as  
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The new eigenfrequencies are Ek.  
The Hamiltonian of the one dimensional electron gas (2.1) has been solved approximately. So far the form of 

interaction potential Vk has not been specified. In fact, physicists choose a variety of forms for this interaction to suit their 

problem. One possible choice is to take 0
2 constant VeVk ==∝  , which gives the energy spectrum as 
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3.0 Discussion of Results    

The simplified commutation relations (2.13) to (2.26) tell us that the density field can be regarded as a Bose-field. 

We first consider the case of the ideal Fermi gas in which there are no interactions between particles. If the gas is not 

excited too highly, only particles in the neighbourhood of the Fermi maximum are raised to higher levels. There exist 

holes and excited particles only in neighbourhood of the surface of the Fermi Sea. Now, in the case of a non-ideal Fermi 

gas, the inter-particle forces cause virtual transition of particles. Thus extra holes and excited particles appear. But if the 

range of inter-particle force is not too short and the force itself is not too strong, these virtual holes and excited particles 

are still present only in the neighborhood of the Fermi maximum. If we confine ourselves to states of such type, we can 

simplify the commutation relations (2.13) – (2.15) in the following manner. Let us consider, for instance, the 

commutation relations [ρ1(k), ρ1(k')]  for which  k > 0 and –k  < k ' < k.  

We notice that the expression on the RHS of (2.8)  
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The Hamiltonian (2.1) has been solved approximately. Only the excitation spectrum has been obtained. And it is 

worth noting that, some of these excitations are fluctuations [13], in the density operator( )kρ . Very similar results to the 

Tomonaga model are obtained by writing an equation of motion for the density operator and solving it approximately 
[14].

 

 Taking the interaction potential as a constant, 0VVk =  the energy spectrum is just altered by having the Fermi 

velocity increased as shown in (2.3). The constant Vo is assumed to be positive, since it describes interactions between 
electrons. The interactions increase the velocity of the acoustic plasmon. And with the interaction potential 
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k ,  we have long-wavelength modes with a constant frequency, which is the plasma frequency (2.41).

 
 In the electron gas, there are two different types of excitations. One is the plasma mode at long wavelength, and 

the other is the electron hole excitations at shorter wavelength. The latter are probably best described by the choice Vk = 
Vo [8,15] 
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4.0 Conclusion 

In this work, we have shown that the original Hamiltonian for the one-dimensional interacting electron gas that was 
not exactly solvable can be transformed into an exactly solvable Hamiltonian [8]. The physics of the excitations of the 
electron gas as approximate bosons [16], was used to solve the Hamiltonian exactly by changing the boson operators to a 
coordinate representation, and the eigenfrequency was obtained. 

Intensive research on 1D electronic systems has raised fundamental issues as to the nature of quasi-particles and 
electron correlations in condensed matter. A variety of quantum phenomena have been found for quasi-1D compounds 
[17]. Tomonaga-Luttinger type electric conductivity has been observed for BaVS3 [18], Peierls instability for CuGeO3 
[19], charge and spin density waves for (TMTSF)2AsF6  and TTF-TCNQ [20]. These diverse and interesting phenomena 
will continue to be of research interest to physicists.  
 
Acknowledgement 

I appreciate the useful contributions received from Dr. B. E. Iyorzor, Famous Akpojotor and other members of 
the Theoretical Research group in the Department of Physics, University of Benin. 
 
References 
[1] Heeger, A. (1977). Chemistry and Physics of One-Dimensional Metals, H.J. Keller Plenum, New York, p87-135.  
 [2] Luther, A. and Emery, V.J. (1974). Backward Scattering in the One-Dimensional Electron Gas, Phys. Rev. 

Lett.33, p589-592. 

[3] Schönhammer, K. (2007). RPAE versus RPA for the Tomonaga model with quadratic energy dispersion,Phys. 
Rev. B 75, p205103-1 – 205103-5.  

[4] Schönhammer, K. (2008). Interacting fermions in one dimension: The Tomonaga-Luttinger model, Institute of 
Theoretical Physics University of Göttingen Bunsenstr. 9, D-37073 Göttingen, Germany, p1-21  

[5] Ortiz, G., Harris, M. and Ballone, P. (1999).  Zero Temperature Phases of the Electron Gas, Phys. Rev. Lett. 82 
(26), p5317-5319. 

[6] Norio, K. and Sung-Kil, Y. (1990). Correlation Functions in the One-Dimensional t-J Model, Phys. Rev. Lett. 
65 (18), p2309-2311. 

[7] Creffield, C. E. ,  Hausler, W.  and MacDonald, A. H. (2001).  Spin and charge Tomonaga-Luttinger parameters 
in quantum wires, Europhys. Lett., 53 (2), p221-227. 

 [8]  Mahan, G.D. (2000). Many-Particle Physics (3rd Edition), Kluwer Academic /Plenum Publisher, 233 Spring ^
 street, New York,  p256 – 276. 

[9] Yoav, P. Reuven, P. and Eleyahu, Z.(1998). Schaum’s Outline of Theory and Problems of Quantum Mechanics, 
Tata McGraw-Hill Publishing Company Ltd., New Delhi, p52, p229. 

[10] Yang C.N. (1967). Some Exact Results for the Many-Body Problem in One Dimension with Repulsive Delta-
Function Interaction, Phys. Rev. Lett. 19 (23), p1312-1315 . 

 [11] Baxter R.J. (1982). Exactly Solved Models in Statistical Mechanics, Academic Press, London, New York. p494. 

 [12] Tomonaga, S. (1950). Remarks on Bloch’s Method of Sound Waves Applied to Many-Fermion Problems, Prog. 
Theor. Phys.(kyoto) 5 (4), p544 – 569. 

[13] Luther, A. and Peschel, I. (1974). Single-particle states, Kohn anomaly and Pairing Fluctuations in One-
Dimension, Phys. Rev. B 9 (7), p2911-2919. 

 [14] Luttinger, J.M. (1963). An Exactly Soluble Model of a Many-Fermion System, J. Math. Phys. 4 (9), p1233-1240 

[15] Lieb, E.H. (1963). Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum, Phys. Rev. Lett. 130 
(4), p1616-1624. 

 
Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 205 – 212           



212 

 

The Tomonaga Model.         Nenuwe, Babalola, and Idiodi        J of NAMP 
 

[16] Lee, D.K.K. and Chen, Y. (1988). Functional Bosonisation of the Tomonaga-Luttinger Model, J. Phys. A. Math. 
Gen.21,p4155-4171. 

[17] Yamaura, K. and Cava, R.J. (2000). Magnetic, Electric and Thermoelecctric Properties of the Quasi-1D Cobalt 
Oxides Ba1-xLaxCoO3(x=0, 0.2), Department of Chemistry and Princeton Materials Institute, Princeton 
University, Princeton, NJ 08540, USA, p301-305 

[18] Nakamura, M. (1994) etal. Metal-semiconductor Transition and Luttinger-Liquid behavior in Quasi-one-
Dimensional BaVS3 studied by Photoemission spectroscopy, Phys. Rev. B, 49 (23), p16191-16201. 

[19] Masashi, H., Ichiro, T. and Kunimitsu, U. (1993). Observation of the Spin-Peierls Transition in Linear Cu2+ 
(Spin-1/2) Chains in an Inorganic Compound CuGe03, Phys. Rev. Lett., 70 (23), p3651-3654. 

[20] Kell, M., Yaffa, T. and Klaus, B. (1982). Antiferromagnetism in the organic conductor bis-
tetramethyltetraselenafulvalene hexafluoroarsenate [(TMTSF)2AsF6]: Static magnetic susceptibility, Phys. Rev. 
B, 25 (5), p3319-3325.  

 

 

 

 

 

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 20 (March, 2012), 205 – 212           
 
 


