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Abstract

The Hamiltonian of the one-dimensional electron gas is not exactly solvable.
Tomonaga upon recognizing that the excitations of the electron gas are approximately
bosons, although the elementary particles, the electrons, are fermions, went on to
assume that the excitations are exactly bosons. The resulting model, the Tomonaga
model immediately becomes exactly solvable. This preliminary work reviews briefly
what has been done so far with the Tomonaga model; details the Tomonaga model and
all the equations it entails, as a starting point for subsequent studies. There is the
likelihood that the model may, in the not too distant future, become as important as the
Hubbard model.

1.0 Introduction

The Tomonaga model proposed by Sin-itiro Tomonagdune 29, 1950 describes a one-dimensional efegae.
The model examines the Hamiltonian of the one-dsimal electron gas and makes some approximatiofits £o as to
render the resulting Hamiltonian exactly solvable.

This model has been useful in several kinds of lerob. First, there are organic solids such asttetrfalvalinium-
tetracyano-quinodimethane (TTF-TCNQ) whose conditgtiis thought to be largely one-dimensional [I[he
Tomonaga model has played a role in the interpogtaif electrical conductivity in these materialy.[Secondly, in
impurity problems, or X-ray absorption problems tiesponse of the electron gas to the central sBpedn be factored
into spherical harmonics associated with differmmgular momentum statésEach angular momentum chanhéhen
becomes a one-dimensional electron gas to which mag apply the Tomonaga model. Recently, semicanduc
nanotechnology permits the construction of semicetat channels which acts as one-dimensional cdadkcThe
Tomonaga model is used in the theory of these syst&ingle wall carbon nanotubes are other exampiesne-
dimensional conductors.

Tomonaga presented the exact solution for the l@agelength density response of a system of inteigérmions
in one spatial dimension. In order to

simplify the problem; he studied the high-densityilt where the range of the interaction is muctgéarthan the
inter-particle distance [3].

The effects of the Coulomb interaction of electronmetals can only be described approximatelyhwitie progress
in producing artificial low dimensional structuréise theoretical work on one-dimensional interactfagnions has
gained importance. Special features of the spectiutow energy excitations in one dimension alloxaet solutions of
models of interacting fermions. The main idea dagaaly be understood by working with noninteracti@gnions, which
have the same spectrum of excitations as a harnebiaic. The method of bosonization is the key cphte understand
ground state properties and the spectrum of exsitaes with low excitation energy also for intéirag fermions [4].

The homogeneous electron liquid (HEL), continuebdmf interest both in three dimensions (3D) [ad & systems
of reduced dimensionality. Unlike their higher-dims@nal counterparts, 1D interacting fermion systeare not Fermi
liquids; instead they exhibit the low-energy pheeowiogy common to many 1D fermion systems, oftderred to as
Tomonaga-Luttinger (TL) liquids [6].
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Any TL liquid is completely specified by four paraters: the charge and spin collective excitatidocitesv, and
v,, and the correlation exponetgsandk,. In the absence of interactiopsandv, reduce to the Fermi velocitys, and the
correlation exponents are equal to 1 [7].
The Tomonaga model, like the Hubbard model, isljiko enjoy a lot of applications in the future.iew of
this, this work will describe in detail the Tomomagodel and all the equations it entails. Some re@e@pplications of
the model will be discussed in a subsequent report.

2.0 Methodology
The original model of Tomonaga (1950) discussesfttfiewing Hamiltonian for the one- dimensional énacting
electron gas [8]:

N 1
H =ve > [Kaca + e 2 VPP (2.1)
ks k

p(k) = %ap_zysap%s (2.2)

WherelL is length of the one-dimensional systef), is Fermi velocity of the particles which are assdnto have a
linear dispersion relatiors = #1, is the spink is the possible electron statgiK) is electron density operatovy is
electron-electron interaction term a@y, and 8, are the creation and destruction operators ofreles in sitek and
spins respectively.

The basic step in the Tomonaga model is to divigedensity operator into two termg, (k) andp, (K) , with

p(k)=> a", a (2.3)
p>O,S p-E,S p+E,S

p(k)=>a , a (2.4)
p<o,s p_E‘S p+§,s

0 p(k) = p(k) + p,(K) (2.5)

The density operator commutes with any other dgigieratoro(K) .
We now examine the commutation relations [9]:

[pl(k),pl(k')]:z . {a;_k a & A } (2.6)

y —S p*_.s '-—,8 p'+_-.s
S, 2° P P2 P

k), o, (K')[ = at,a,a ,.,a —-a ,.a . a,a 2.7
[o,), (k)] Zp;o{ A pi} 27)
Summing oves’ andp’, we obtain
k K k k'
k), p,(K')[ = a’, a Q| p+—=—+—|—-a' a, Olp-———— 2.8
[pl( )pl( )] s;(){ p—g,s p+k’+g,s [p 2 2} p—k’—g,s p+§,s [p 2 2)} 8

I

k k
where, © ( p +§ +E) is a step function, defined as

@(p+5+£j:1 if p+5+£ >0 )
2 2 2 2
k K
=0 if | p+—+—| <0 2.9
P+ > (2.9)
_ k K
=% if | p+—+— =0
2 2 ~
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An important special case k5= -k
Then, equation (2.8) becomes

[pl(k),pl(—k)]=25‘, > Nye (2.10)

E< <E
2_p_2
—_ + —_ +
where n , =a ,a and n , =a , a (2.11)
p—.s p-_.S P—.S p+>.s p+o.s Lk
2 2 2 277 pgs

The operaton, s is replaced by its average in the ground statbefree-particle system

{2
D, 2Ny =2 Z?(kf ‘|I0|) =1 (2.12)
s —Esp<— —7<p<E Tf k>2Kk;

The commutation relation (2.10) can be written fer2k_. as

K
[0.(k), o.(-K)] = = (2.13)
[0,(K).2,(-K)] = —(‘j—g 2.1
lo(k), p,(—k)] =0 (2.15)

The analogous results are included for the othemeotators, (2.14) and (2.15), which can be derinetie same way as
shown above. The Tomanaga model assumes thatdbaséy operators obey the exact commutation celatof

[p.(k). p.(-K")] = 5(%]
(o2 (k). o (k)] = _5k,k'[k_77l'j (2.16)
[o(k). £.(-k)] =0

The relations (2.16) constitute tigentral approximation of the Tomonaga model. The commutation relatiams reot

exact, since the commutators give operators, €& 10). However, exact results are obtained whkingathe expectation
value of the commutation relations [10] as showadn.(2.17)

(a®.a)) =4, S%K%; > _<np+§ ﬂ

=2 d(k kzk<np,s>
% (2.17)

It is convenient to express the density operatpﬁ{ik) in terms of creation and destruction operators for
bosons. These definitions are given in (2.18), whke symbok is always positive:

[ N
pl(k)_bk I_T
ki
1—k =b" |—
P(=K) bk,/ﬂ > 019
. |kl
pz(k):b—kﬂ_
Vs
[
PR b, [~ )
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(WL (2.19)

The operatorgg, always commute witjD, . The choice (2.18) satisfies the approximate cotatian relation (2.16).
The 2 term in the Hamiltonian (2.1) may be written imts of these boson operators:

p (K)=pu(K)+ p () = (b, + bfk)\/g

i (2.20)

p (=K)=p,(=K) + p,(-k) =(b; + b_k)\/;

On substituting (2.20) into thé%erm of (2.1), we obtain

1 _
—>» V. plk)o(-k)=> V, b +b’, Jb" +b
oL & kp( )p( ) ; k(bk —k)( —k) (2.21)
where, V, = Vk|k| (2.22)
R 2n '

The electron-electron interaction term has beeastdato an interaction between the boson excitaifche electron gas.
The F'term in the Hamiltonian (2.1) is the particle Kineenergy. We shall now express it in terms ofdmos

coordinates.

Let H, be the kinetic energy term,

HO = I/F Z|kl| al:'s‘ak's‘
s (2.23)
Ilts commutator withp, (K) is

[2.(K). Hy] =K, (K)

Substituting (2.18) into (2.24) and simplifying, wbtain
[0, Ho] =v: Kb, = b, (2.25)
where, W, = VK

(2.24)

Next, considering the commutatoriéf with 0, , we obtain

[0,(). Ho=-w, ,(K) (2.26)
Both of these approximate commutators are satisfigdthe following choice foH,
H, = whbb, 2.27)
k
H =Y lwhb, +V (o +b Jbr +b. )| (2.28)
k

The one-dimensional electron gas (2.1) has beastauno the boson Hamiltonian (2.28), which isatlyasolvable [11].
We now solve equation (2.28) exactly by changing toordinate representation for the boson opesrato

1 N
Q= on, (bK + b_k) (2.29)
P, =iyw, /2(bk —bfk) (2.30)
[Qk’ pk'] =19 (2.31)

In this representation the Hamiltonian is written a
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1
Ho ZEZ(P—kPk +WIkaQ—k) (2.32)
_1 2
- EZ (P-kFi + Ek QkQ—k) (2.33)
EZ =W + 4wV, (2.34)

The new eigenfrequencies &g
The Hamiltonian of the one dimensional electron (a%) has been solved approximately. So far them fof
interaction potential/, has not been specified. In fact, physicists ch@ogariety of forms for this interaction to suieth

problem. One possible choice is to tAke [J € = constantV, , which gives the energy spectrum as

E. =V K (2.39)
_ 2
where, Vp = V| Ve +—=V, (2.40)
T
_ . 2( k2 _
Another possible choice is to také = 5 2 |’ and the energy spectrum is
— 2,2
E =KV +wW (2.41)
— _47E°n
WERAAVEE . (2.42)
3
where,n, =—5
T

3.0  Discussion of Results

The simplified commutation relations (2.13) to @.2ell us that the density field can be regarded 8ose-field.
We first consider the case of the ideal Fermi gawlich there are no interactions between partidfethe gas is not
excited too highly, only particles in the neighbmowd of the Fermi maximum are raised to higherl&vEhere exist
holes and excited particles only in neighbourhobthe surface of the Fermi Sea. Now, in the case ndn-ideal Fermi
gas, the inter-particle forces cause virtual ti@msiof particles. Thus extra holes and excitediglas appear. But if the
range of inter-particle force is not too short dinel force itself is not too strong, these virtuales and excited particles
are still present only in the neighborhood of tleerfi maximum. If we confine ourselves to stateswdth type, we can
simplify the commutation relations (2.13) — (2.1®) the following manner. Let us consider, for im&ta, the
commutation relationg{(k), p1(k")] for which k>0 and k <k'<k

We natice that the expression on the RHS of (2.8)
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is a surr of operator eachbringingc one particle from the level
k k
+k'+— to the level p-k'-—.
P 5 P 5
Becausethesummationover p is extendedonly between k' and g the final

levels p—k'—g lie in alimited interval between —g and -k
Now let khax denote the value of |k |at the Ferm maximum Then if k anc|k'|are bott

sufficiently smallcomparedwith kygx , thelevels —g and -k' bothlie deepin the

bottom of the Fermisea wherethereareholes. In suchacasetheoperatora®, a
P=7,

ES p+k’+5,s
will give a vanishingresultbecuasehefinal levelis occupied.Thus,for the commutators

[0,(k) , p,(k")] areequivalentto zero[12].

We next consider [p,(k) ,p,(-K)]= > > n,. (210) where Np,s is the occupation

k
_Kepe
k<ps

NES

number of thelevel p. Sincethelevel p, which lies between—E and Kk, liesdeep

2

in the Fermi seaif k issmall comparedwith kmpax, it is occupied by one particle.
Then thesum Np s is simply equalto the number of levels between —g and

k, which is just k. So,we obtain 'Ol(k) ,pl(-k i as equivalenttok (213).
The Hamiltonian (2.1) has beenlved approximatelyOnly the excitation spectrum has been obtainexdl ifis
worth noting that, some of these excitations awetflations [13], in the density operam({(). Very similar results to the

Tomonaga model are obtained by writing an equatiomotion for the density operator and solving ppeoximately
[14].
Taking the interaction potential as a constaft, =V, the energy spectrum is just altered by havingReemi

velocity increased as shown in (2.3). The constgnis assumed to be positive, since it describesaotions between
electrons. The interactions increase the velocifythee acoustic plasmon. And with the interactiontepdial

2( e’k?
V, = 5( kzF , we have long-wavelength modes with a constaugfigncy, which is the plasma frequency (2.41).

In the electron gas, there are two different typlesxcitations. One is the plasma mode at longehemgth, and
the other is the electron hole excitations at gmosavelength. The latter are probably best desdrly the choic&/ =

V, [8,15]
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4.0 Conclusion

In this work, we have shown that the original Haarilan for the one-dimensional interacting electgais that was
not exactly solvable can be transformed into arcéaolvable Hamiltonian [8]. The physics of theciations of the
electron gas as approximate bosons [16], was wssdlte the Hamiltonian exactly by changing thednogperators to a
coordinate representation, and the eigenfrequersyaltained.

Intensive research on 1D electronic systems hagddundamental issues as to the nature of quatitipa and
electron correlations in condensed matter. A varigtquantum phenomena have been found for quasidrbpounds
[17]. Tomonaga-Luttinger type electric conductiviigs been observed for BayB8], Peierls instability for CuGeQ
[19], charge and spin density waves for (TMT28fs and TTF-TCNQ [20]. These diverse and interestingnomena
will continue to be of research interest to phystii
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