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Abstract 
 
In this paper, we are concerned with one-dimensional time invariant optimal 

control problem, whose objective function is quadratic and the dynamical system is a 
differential equation with initial condition .Since most real life problems are non-
linear and their analytical solutions are not readily available, we resolve  to 
approximate solutions. Our aim is to develop a numerical scheme to solve one 
dimensional optimal control problem. A discretization of the performance index using 
trapezoidal rule and the state equation using crank-Nicholson is adopted. By 
parameter optimization, this results into a sparse non-linear programming problem. 
With the aid of Augmented Lagrangian method, a quadratic function with a control 
operator (penalized matrix) amenable to conjugate gradient method is generated. 
Numerical experiments verify the efficiency of the proposed technique which 
compares much more favourably to the existing scheme. 
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1.0    Introduction 

Optimal control theory is an extension of calculus of variation. It is a mathematical optimization method for deriving 
control policies [1]. Optimal control deals with the problem of finding a control law for a given system such that certain 
optimality criterion is achieved. In the problem of optimal control, the trajectory is determined, which satisfies 
simultaneous equations of motions, boundary conditions, inequality constraints, equality constraints, where the 
performance index (cost functional) must be minimized or maximized. There are many procedures for solving optimal 
control problems such as calculus of variations, minimum principle, matrix exponential, and Hamilton-Jacobi equations. 
However, these are considered as indirect procedures, since the necessary and sufficient conditions must be derived and 
result expressible in differential-algebraic equation (DAEs). This paper focuses on the direct procedure in which the 
optimal control problems will be converted to parameter optimization problems. In section 2, the statement of the problem 
is described along with a technique developed by [2] called exterior penalty method. We are proposing a similar 
technique in section 3 called Augmented Lagrangian method. We believe that by using augmented Lagrangian, the 
problem of ill-conditioning attached to the perturbed matrix will be reduced and as such, a better result with lesser 
iterations will be obtained. The Augmented Lagrangian algorithm is shown in section 4. Finally, examples are illustrated 
in section 5 to show the efficiency of the new scheme compared to exterior penalty method. 

 
2.0  General Formulation of The Problem 
 
The statement of the problem is to find an optimal trajectory in both state and control variable to minimize the cost 
functional 
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where ,x u are state and control variables respectively. 

Methods for solving optimal control problems can be divided into two basic classes: indirect and direct methods. In the 
indirect approach, the optimal control problem is transformed into a boundary value problem by formulating the first 
order necessary conditions for optimality, thereby obtaining the Euler –Lagrange system [3], [4], [5]. The resulting 2-
point boundary value differential-algebraic equation is solved analytically by standard differential techniques through the 
formulation of Riccati equation [2].  In the direct approach, the optimal control problem is approximated by a parameter 
optimization problem in which the first order optimality conditions are not explicitly included. Earlier Authors discretized 
the performance index and constraint using rectangular and Euler schemes respectively and obtained an unconstrained 
formulation by adjoining the objective and constraint using exterior penalty function method. Now, a nonlinear 
programming algorithm with Conjugate gradient method (CGM) is used to obtain solution to (1) and (2).  
 

3.0  Method of Solution 
 
In this work, Augmented Lagrangian method is described in a similar procedure as exterior penalty technique. 
 Consider Optimal Control Problem of the form, 

      2 2

0

min ( , ) ( )( ) ( )
Z

J x u px t tqu dt= +∫                                                                             (3)                                                                                                                        

Subject to:   �� � ����� � 	
���                                                                                                (4) 
   ����� � �,   � � �0, �� 
where �, 	 are real constants, �, � � 0 , c R∈   
In order to solve problem (3) and (4) by CGM, we replace the constrained problem by an appropriate approximate 
discretized optimal control problem [6]. �. � breaking the interval into � equal subintervals with knots 0 � �� � �� � �� �
� � �� � � and ∆�! � 0.01 ��# �! � $∆�! , $ � 0,1,2, … , � ' 1, � 
Discretising equation (3) using trapezoidal rule and (4) using crank-Nicholson we have, 
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  This can be re-written as  

  ()*( � + ′ ,                                                                                                                          (7a) 
where, 

              ( )1 2 3 0 1 2
T

N NV x x x x u u u u= L L                                      (7b) 
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and 

            0 2

h
C C p=                                                                                                                    (7d) 

 

We seek to discretize our constraint using second order one step implicit trapezoidal rule (Crank-Nicholson) [7]. 
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1 1k k k kx ax bu bu+ += + +                                                                                                           (9) 
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Hence, the discretized dynamical system becomes  

1 1k k k kx ax bu bu+ += + +                                                                                                            (11)          
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Eequation (12) can be written as 
 

( )( )E F V K=M  

Where E  is a bidiagonal matrix,F  is also a bidiagonal matrix but V andK are column vectors respectively. Where 

( )J E F= M  and JV K=                                                                                                                        

Where      J is of dimension  N  × (2N +1) , ( is of dimension (2N +1) × 1 , and ( 1)K N= ×  

Therefore, the discretised optimal control problem becomes, 

                        2 2 2 2
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Subject to  

                     1 1k k k kx ax bu bu+ += + +                                                                                                              (14) 

By parameter optimization [8], the discretised optimal control becomes 

                         TV AV C+                                                                                                                                 (15) 
Subject to 
                              JV K=                                                                                                                                 (16) 
                      

            V  is a column vector of dimension (2, � 1� - 1 , 1 2 2 0 1 2( , , , , , , , , )T
N NV x x x x u u u u= L L  and 

          A    is a square matrix of dimension �2, � 1�	. �2, � 1�. 
Starting from 1968, a number of Researchers have proposed a new class of methods, called methods of multiplier in 
which the penalty idea is merged with the primal-dual and Lagrangian philosophy. In the original method of multiplier 
(Augmented Lagrangian method), proposed by Hestenes and Powell [10] the quadratic penalty term is added not only to 
the objective function (�)*� � +� of (ECP) but rather to the Lagrangian function [9] 
         / �  ()*( � + � 0)�1( ' 2�                                                                                          (17) 
Hence, the Augmented Lagrangian function from equation (16) becomes 

Minimize  /3�4,µ, 0� �  ()*( �  0)|1( ' 2| � �
6 71( ' 27�                                                  (18) 

On expansion we have, 

 /3 �  () 8* � ��
µ

1)19 ( � 80)1 '  �
µ

2)19 ( � ��
6 2)2 '  0)2 � + ′�                                  (19) 

 /3 �  ()*3( � :)( � +                                                                                                       (20) 
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 where :)     is of dimension 1 - �2, � 1� 
              *3    is of dimension �2, � 1�  - �2, � 1� 
              C      is of dimension 1 - 1 

This equation (21) is a quadratic programming problem which can be solved via Conjugate Gradient Method (CGM) 

 where      *3  �   * � �
µ

1)1                                                                                                       (21) 

                  :) �   0)1 ' �
µ

2)1                                                                                                   (22) 

                 
1 T TD K K K Cλ
µ

= − +                                                                                        (23)                                                                  

;<==> ?. @: Consider the formulated quadratic function (18), the penalized matrix
1 TA A J Jρ µ

 = + 
 

is said to be 

positive definite. 
Proof: See [2]. 
The positive definiteness of the penalized matrix makes the scheme amenable to conjugate gradient method. We solve the 
unconstrained minimization equation (20) by conjugate gradient algorithm in the inner loop and enforce the feasibility 
condition in the outer loops as stated in the algorithm below. 
 

4.0  Algorithm For The Scheme       

         ( )    i   Choose (�,� A  �BC� , + � 0 ,µ � 0 , 0 � 0, # � 0. D�� E � 0 

        ( )    ii  Set � � 0 ��# �� �  'F� � 'G/3H(�,�I  

        ( )    iii Compute JK �  LM
NLM

3M
NO3M

 

        ( )    iv  Set (P,KC� �  (P,K �  JK�K 

         ( )    v  Compute  G/3�(P,KC�� 

        ( )    vi If G/3H4P,KC�I � 0 ��# 1(P,KC� � 2, D�Q� �RS� FQ �Q    ( )    vii  

      ( )    vii  If G/3 H4P,KC�I T 0, S�� FKC� �  G/3H(P,KC�I 

                                                       �KC�  �   'FKC� �  UK�K   

                                                  UK     �     LMVW
N LMVW
LM

NLM
 

       ( )    viii Set � � � � 1 ��# FQ �Q S��� 3 

        ( )    i×   Else, if 1(P,KC�  T 2 YZ  1(P,KC� '  2 � 0, �[�� 

        set     µ!C�  �  #µ! 
          0PC� �  �0P �  µP�1( '  2� 

         ( )    ×   Set E � E � 1  ��# FQ �Q S��� �2� 

 

5.0  Numerical Examples and Presentation of Results. 
 
Example 5.1.  +Q�S�#�\ �[� Q���]�R �Q��\QR �\Q	R�] 

                        
1

2 2

0

min ( , ) ( ( ) ( ))I x u x t u t dt= +∫                                                                                                 (24) 
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D
	E��� �Q: 
                       ( ) 1.705 ( ) 3.021 ( ), (0) 1x t x t u t x= + =&                                                                    (25) 

                 where 1, 1, 1.705, 3.021p q a b= = = =  

We now present the results of the investigations based on the operator( )Aρ . The results presented in Table 1 shows the 

accuracy and the efficiency of using Augmented Lagrangian function on the discretised optimal control problem 
amenable to conjugate gradient method compared to exterior penalty function, taking _ � 1000, [ � 0.01 for both 
schemes. 
 
Table 1. Comparison between existing method and the newly developed scheme. 
Iterations          Constraints  Satisfaction             Objective Value 
  
1 
2 
3 
4 
5 
6 
 

DCAQP (2011) New Scheme DCAQP (2011) New Scheme 
2.1191E-3 
2.1381E-4 
2.1400E-5 
2.1402E-6 
2.1402E-7 
2.1402E-8 
 

 

2.0933E-3 
1.0661E-4 
5.3406E-6 
2.6708E-7 
1.3335E-8 
 

0.5700 
0.5741 
0.5746 
0.5746 
0.5746 
0.5746 

0.5605 
0.5648 
0.5649 
0.5649 
0.5649 
 

 

By [2], the analytical solution is   

                            3.4689 3.46890.0028 0.9971
,

0.0010 1.1305
t tx

e e
µ

−     
= +     −     

                                            (26) 

Control variable is 3.4689 3.4689( ) 0.0015 1.7076 .t tu t e e−= −                                                        (27) 

The analytical objective function value is 0.5647I =  and the objective value using exterior penalty method is 

0.5746I =  while the objective value using augmented lagrangian is 0.5649I =  
 
Example 5.2.  +Q�S�#�\ �[� Q���]�R �Q��\QR �\Q	R�] 

               
1

2 2

0

min ( , ) ( ( ) ( ))I x u x t u t dt= +∫                                                                              (28) 

   Subject to  

                    2 ( ) 5 ( ), (0) 1x x t u t x= + =&                                                                                (29) 

    where   1, 1, 2, 5p q a b= = = =  

By [2], the analytical solution is  

                       5.38521.0000

0.5908
tx

e
µ

−   
=   −   

                                                                                      (30) 

The control variable is given as, 

                            5.3852( ) 1.4770 .tu t e−= −                                                                                       (31) 

 The analytic objective function value is 0.2954I =  and the objective value using exterior penalty method amenable to 

conjugate gradient is 0.3024I = while the objective function value using Augmented Lagrangian amenable to conjugate 

gradient is 0.2956I =  as we can see in the Table 2. 
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Table 2. Comparison of results using existing scheme and the developed scheme. 
 
Iterations          Constraints  Satisfaction             Objective Value 
  
1 
2 
3 
4 
5 
6 
7 
 

DCAQP (2011) New Scheme DCAQP (2011) New Scheme 
0.6697E-1 
0.8729E-2 
0.9010E-3 
0.9039E-4 
0.9042E-5 
0.9042E-6 
0.9042E-7 
 
 

0.6633E-1 
0.5414E-2 
0.2891E-3 
0.1455E-4 
0.7282E-6 
0.3641E-7 
 
 

0.2430 
0.2955 
0.3026 
0.3033 
0.3034 
0.3034 
0.3034 

0.2366 
0.2926 
0.2955 
0.2956 
0.2956 
0.2956 
 

 

6.0. Convergence Analysis 
 
Naturally, solving an approximate problem, we can only be expected to obtain an approximate solution of the original 
problem. In this research, we construct a sequence of approximate problems which converges in a well-defined sense to 
the original problem with some error of tolerance. Then the corresponding sequence of approximations yields in the limit, 
a solution of the original problem. 
Considering the algorithm in section 4 above, we are only concerned with the speed at which the algorithm converges to a 
limit.  
Given a sequence 

                            { } 2 1n
kz R +⊂   with   

*
kz z→  

The typical approach is to measure the speed (rate) of convergence in terms of error function. 

                                       2 1: ne R R+ →  

Satisfying  ( ) 0e z ≥  for all 2 1nz R +∈  and *( ) 0e z =  

 

Where ( )e z z z∗= −       

Suppose  

                                  0ke k≠ ∀ , 

Our convergence ratio (β ) becomes 

                                  1
2

lim k

k
k

e

e
β +

→∞
=    Or [ ]

*

* 2
1

10,11 .
( )lim

k

k k

Z Z

Z Z
β

→∞ −

−
=

−
 

If 0 1β< < , then { }kz converges quadratically with convergence ratioβ . If 0β = , then { }kz converges super-

linearly. If 1β = , then { }kz converges sublinearly. 

Though optimization algorithms are known or expected to converge linearly, quadratically or super linearly, however, 
quadratic convergence is the most satisfactory for optimization algorithms provided the convergence ratio is not close to 
one as we can see in example 5.1 as shown in Table 3. 
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 Table 3. Convergence ratio of the iterations 
 

Penalty 
Parameter(µ ) 

Objective Value 
( r ) 

Convergence 

ratio ( β ) 

31.0 10−×  0.5605 0.0087 

      41.0 10−×  0.5648 0.3711 

      51.0 10−×  0.5649 0.6363 

      61.0 10−×  0.5649 0.6447 

      71.0 10−×          0.5649 0.6450 

                                     

7.0. Conclusion and Comments 
 

We have shown that Discrete Optimal Control problem can be solved via Conjugate Gradient Method using exterior 
penalty method and augmented Lagrangian method to construct the control operator (*`). The solutions of both methods 
compare favourably to the analytical solution. However, it is observed that the new scheme agrees better to the exact 
solution in terms of accuracy and convergence. Hence, it is a better scheme. 
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