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Abstract

In this paper, we are concerned with one-dimensional time invariant optimal
control problem, whose objective function is quadratic and the dynamical system isa
differential equation with initial condition .Since most real life problems are non-
linear and their analytical solutions are not readily available, we resolve to
approximate solutions. Our aim is to develop a numerical scheme to solve one
dimensional optimal control problem. A discretization of the performance index using
trapezoidal rule and the state equation using crank-Nicholson is adopted. By
parameter optimization, this results into a sparse non-linear programming problem.
With the aid of Augmented Lagrangian method, a quadratic function with a control
operator (penalized matrix) amenable to conjugate gradient method is generated.
Numerical experiments verify the efficiency of the proposed technique which
compares much more favourably to the existing scheme.
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1.0 Introduction

Optimal control theory is an extension of calcubfizariation. It is a mathematical optimization imed for deriving
control policies [1]. Optimal control deals withetiproblem of finding a control law for a given ®ystsuch that certain
optimality criterion is achieved. In the problem optimal control, the trajectory is determined, ebhisatisfies
simultaneous equations of motions, boundary canliti inequality constraints, equality constraintghere the
performance index (cost functional) must be mingdior maximized. There are many procedures forirgplaptimal
control problems such as calculus of variationg)imum principle, matrix exponential, and Hamiltcacdbi equations.
However, these are considered as indirect procedsiiece the necessary and sufficient conditionstiie derived and
result expressible in differential-algebraic equat(DAES). This paper focuses on the direct proseda which the
optimal control problems will be converted to paeden optimization problems. In section 2, the sieet of the problem
is described along with a technique developed HycBElled exterior penalty method. We are proposingimilar
technique in section 3 called Augmented Lagrangi@thod. We believe that by using augmented Lageanghe
problem of ill-conditioning attached to the pertedbmatrix will be reduced and as such, a betteultregith lesser
iterations will be obtained. The Augmented Lagranghlgorithm is shown in section 4. Finally, exagsphre illustrated
in section 5 to show the efficiency of the new sohecompared to exterior penalty method.

2.0 General Formulation of The Problem

The statement of the problem is to find an optitnajectory in both state and control variable taimize the cost
functional
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J= j L(t, x(t),u(t))dt (D)

Subject to: X(t) = f(t,x@),ut), tO[t,t, ] @)
where X, U are state and control variables respectively.

Methods for solving optimal control problems candiéded into two basic classes: indirect and direethods. In the
indirect approach, the optimal control problemrensformed into a boundary value problem by fortigdathe first
order necessary conditions for optimality, therelngaining the Euler —Lagrange system [3], [4], [Bhe resulting 2-
point boundary value differential-algebraic equati® solved analytically by standard differentiettiniques through the
formulation of Riccati equation [2]. In the dirempproach, the optimal control problem is approxadaby a parameter
optimization problem in which the first order optéility conditions are not explicitly included. E@riAuthors discretized
the performance index and constraint using rectangand Euler schemes respectively and obtainednaonstrained
formulation by adjoining the objective and consttausing exterior penalty function method. Now, anlinear
programming algorithm with Conjugate gradient metk@GM) is used to obtain solution to (1) and (2).

3.0 Method of Solution

In this work, Augmented Lagrangian method is dé&tiin a similar procedure as exterior penaltyrapke.
Consider Optimal Control Problem of the form,

minJ(x,u):j'(pxz(t)+qu2(t))dt )

Subject to: X = ax(t) + bu(t) 4)

x(ty) =c¢, t€[0,Z7]
wherea, b are real constants,q > 0, CLOR
In order to solve problem (3) and (4) by CGM, welaee the constrained problem by an appropriateoxppate
discretized optimal control problem [G]e breaking the interval inta equal subintervals with knots=t, < t; < t, <
- < t, = Z andAt, = 0.01 and t, = kAt,,k=0,1,2,...,n—1,n
Discretising equation (3) using trapezoidal ruld &) using crank-Nicholson we have,

J(PE® +aur@)at = 2 X TPOC() +X(h0) + AUt +u(t )] ®

whereh=—

Writing this in matrix form, we have,

ph. X

X e X u u .- u +C.p—
(Xl 2 N Yo Y N) h u op2

gh N

qh
2
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This can be re-written as

VTAV +C/, (7a)
where,
VT:(Xl X, Xz o0 Xy Ug Up U, - UN) (7b)
ph, i1=12,3,.N-1
h .
—, 1=N
p2
h .
A= q? I=N+1 (7c)
gh, i=N+2N+2,...AN
h .
—, 1=Z2N+1
q2
and
c=C pD (7d)
)

We seek to discretize our constraint using seceddrane step implicit trapezoidal rule (Crank-Nitson) [7].
. a- 1
M) =55 = (LU 1) = {1 (et * £ 050} +O() @
2 2

=% =D K )+ (6] +O()

h h h h
(1_ aE)Xkﬂ = (1+ aE)Xk + b_zuk+1 + b_zuk

X1 = 3% +buy, +bu, 9)
__(2+ah) = bh
Where,a = andb = (10)
(2—ah) (2—-ah)

Hence, the discretized dynamical system becomes

Xy = %+ Bu|<+1 + t_)uk (11)
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%,
X,
1 '-b b c,
| — —
-a 1 0 -b -b
— | — — XN
0 -a 1 10 0 -b -b 0
_ l _ U, |= (12)
0 0 -a 1 10 0 0 -b -b )
: 0 -a 1 | 0 -b -b ul
0 0O 0 -a 1, 0 0 O© 0 b -b)] | (0O
uN

Eequation (12) can be written as

(EiF)(V)=K

Where E is a bidiagonal matri¥: is also a bidiagonal matrix b/ andK are column vectors respectively. Where
J =(E§ F) and JV =K

Where Jis of dimension N x (2N +1) ,V is of dimension (N +1) x 1, andK = (N x1)

Therefore, the discretised optimal control problesnomes,

N
5 2 LPOC(8) + (6, ) + (U8 +u'(h, ) 13
Subject to
Xen = B +buy,, +bu, (14)
By parameter optimization [8], the discretised oyati control becomes
VTAV +C (15)
Subject to
JV =K (16)

V is a column vector of dimensionN2+ 1) x 1, V' = (X3 X5 Xppe e+, Xy sUg Uy U5+ Uy ) and

A is a square matrix of dimensi6&N + 1)by (2N + 1).
Starting from 1968, a number of Researchers hagpgsed a new class of methods, called methods &fpiiar in
which the penalty idea is merged with the primadidand Lagrangian philosophy. In the original meitlod multiplier
(Augmented Lagrangian method), proposed by Hestand$owell [10] the quadratic penalty term is abdet only to
the objective function4” AZ + C) of (ECP) but rather to the Lagrangian function [9]

L=VTAV +C+AT(JV — K) 17)
Hence, the Augmented Lagrangian function from equodtL6) becomes
Minimize L,(v,, ) = VTAV + AT|JV — K| +i||]v—1<||2 18]
On expansion we have,
=T 1ir Ty _ 24T 1T _ T ,
L=V (A+(ﬂ]])V+(/1] ﬂK])V+(MKK ATK +C) (19)
L,=VTA,V + B"V +C (20)
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whereBT is of dimensiorl x (2N + 1)
A, isofdimensior2N +1) x (2N + 1)
C isofdimensidnx 1
This equation (21) is a quadratic programming pFobivhich can be solved via Conjugate Gradient Mk{@GM)

where A, = A+ %]T] (22)
BT = A= 2K"J 122
D:EKTK—/}TK+C (23)

U

1
Lemma 3.1: Consider the formulated quadratic function (18} penalized matrid, :|:A+—JTJ:|iS said to be
u

positive definite.

Proof: See [2].
The positive definiteness of the penalized matrakes the scheme amenable to conjugate gradienbdhdie solve the

unconstrained minimization equation (20) by conjaggradient algorithm in the inner loop and enfoifoe feasibility
condition in the outer loops as stated in the dtligor below.

4.0 Algorithm For The Scheme

(i) Choosd/yye?¥*,C >0,u >0,2 >0,d>0.Setj=0
(i) Seti=0andp, = —go = —VL,(Vo,0)

9; 9i
PiTAPi

(v) SetVji=Vyi+ ap

(v) ComputeVL,(V; ;1)

(Vi) IfVL,(vj;41) = 0and]V;;, = K,Stop else goto (i)
(Vii) If VL, (vj41) # 0,5et gixg = VL, (Vji11)

(iii) Computea; =

Pi+1 = —Yi+1 T Vil
T
Yi — Ji+19i+1
L algi

Viii) Seti =i+ 1and go to step 3
g p
(iIx) Else,if/V;4; #Kor Vi, — K =0,then

set py,, = duy
Ajv1 = [+ w,JV = K)

(X) Setj=j+1 and goto step (2)

5.0 Numerical Examples and Presentation of Results

Example 5.1. Consider the optimal control problem
1
min | (x,u):j(x2 (t)+u?(t))dt (24)
0
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Subject to:
X(t) =1.705 ¢ )+ 3.02a t )x (OF (25)
wherep =1, =1, a=1.705b= 3.02
We now present the results of the investigatiorsetiaon the operat(:Ap) . The results presented in Table 1 shows the

accuracy and the efficiency of using Augmented hagian function on the discretised optimal contpobblem
amenable to conjugate gradient method comparedxteEri@r penalty function, takingt = 1000,h = 0.01 for both
schemes.

Table 1 Comparison between existing method and the newly developed scheme

Iterations Constraints Satisfaction Objective Value |
DCAQP (2011) New Scheme DCAQP (2011) New Scheme
1 2.1191E-3 2.0933E-3 0.5700 0.5605
2 2.1381E-4 1.0661E-4 0.5741 0.5648
3 2.1400E-5 5.3406E-6 0.5746 0.5649
4 2.1402E-6 2.6708E-7 0.5746 0.5649
5 2.1402E-7 1.3335E-8 0.5746 0.5649
6 2.1402E-8 0.5746
By [2], the analytical solution is
X\ _ 0.0028 Ghase . 0.9971 o 34680 (26)
) 10.0010 -1.130 ’
Control variable isu(t) = 0.001%>*%** — 1.7076 >*°%® (27)

The analytical objective function value ik =0.5647 and the objective value using exterior penalty hoét is
| =0.574€ while the objective value using augmented lagramgs | =0.564¢

Example 5.2. Consider the optimal control problem

1
min 1 (x,u)= j O (t)+u?(t))dt (28)
0
Subject to
x=2x{t)+5uf(), x(0)=1 (29)
where p=1 q=1,a=2,b=¢5
By [2], the analytical solution is
X _(1.0000 ) s, o)
u) -0.5908
The control variable is given as,
u(t) = -1.477@ >3 (31)

The analytic objective function valuelis= 0.2954 and the objective value using exterior penaltyhndtamenable to
conjugate gradient ks = 0.3024while the objective function value using Augmentegjrangian amenable to conjugate
gradient isl =0.295¢€ as we can see in the Table 2.
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Table 2 Comparison of results using existing scheme and thieveloped scheme.

Iterations Constraints Satisfaction Objective Value |
DCAQP (2011) New Scheme DCAQP (2011) New Scheme

1 0.6697E-1 0.6633E-1 0.2430 0.2366

2 0.8729E-2 0.5414E-2 0.2955 0.2926

3 0.9010E-3 0.2891E-3 0.3026 0.2955

4 0.9039E-4 0.1455E-4 0.3033 0.2956

5 0.9042E-5 0.7282E-6 0.3034 0.2956

6 0.9042E-6 0.3641E-7 0.3034 0.2956

7 0.9042E-7 0.3034

6.0. Convergence Analysis

Naturally, solving an approximate problem, we catyde expected to obtain an approximate solutibthe original
problem. In this research, we construct a sequehepproximate problems which converges in a weflried sense to
the original problem with some error of toleranthen the corresponding sequence of approximati@idsyin the limit,
a solution of the original problem.
Considering the algorithm in section 4 above, weanly concerned with the speed at which the algorconverges to a
limit.
Given a sequence

{z} OR™ with z - Z
The typical approach is to measure the speed @atgnvergence in terms of error function.

e:R"™ L R

Satisfying €(z) =0 for all ZOR*™" ande(Z) =0

Where e&(z) = ‘Z - ZD‘

Suppose
e #20 Ok,
Our convergence ratioff ) becomes
€ 1 HZ
,8—I|m or B=|im 0,1
q(Z i (HZ _l [ :ﬂ

If0< B <1, then {Zk} converges quadratically with convergence rioIf =0, then {Zk} converges super-

linearly. If =1, then{ Zk} converges sublinearly.

Though optimization algorithms are known or expédi@ converge linearly, quadratically or super dirlg, however,
guadratic convergence is the most satisfactorpfimization algorithms provided the convergenders not close to
one as we can see in example 5.1 as shown in Bable
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Table 3.Convergence ratio of the iterations

Penalty Objective Value | Convergence
Parameter( /) (r) ratio ( B)
1.0x10° 0.5605 0.0087
1.0x10* 0.5648 0.3711
1.0x10° 0.5649 0.6363
1.0x 10° 0.5649 0.6447
1.0x 10" 0.5649 0.6450

7.0. Conclusion and Comments

We have shown that Discrete Optimal Control prob&am be solved via Conjugate Gradient Method usiigrior
penalty method and augmented Lagrangian methodrstruict the control operatod f). The solutions of both methods
compare favourably to the analytical solution. Hoer it is observed that the new scheme agreesrbettthe exact
solution in terms of accuracy and convergence. Egihis a better scheme.
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