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Abstract

An algorithm is hereby developed to solve a class of control problems constrained
by dynamic restoring type with matrix coefficients numerically. The penalty-multiplier
method is evolved to obtain an unconstrained discretized formulation. With the bilinear
form expression, an associated operator is constructed via a theorem to circumvent the
cumbersomeness inherent in some earlier methods; particularly the Function space
algorithm (FSA).The conjugate gradient method (CGM) is evoked to solve the
discretized problem. One sampled problem is solved numerically and the convergence
analysisisfound to be linearly convergent as demonstrated in the output data tables.
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1.0 Introduction

Developing an efficient Truly algorithm for solgroptimization problems is a field of Research ibaevolving
very rapidly, so that the methods seeming besttadll probably be abandoned soon and replacéeekiy old ideas in
a new framework or by entirely novel techniquesentt, we are developing a new algorithm using thgndented
Lagrangian Method to obtain an approximate probtérthe original problem. Naturally, if we construktsequence of
approximate problems converging, in a well defisedise to the original problem, then expectedlycithreesponding
sequence of approximate solutions will give a solubf the original problem.

Here, the analytic method of solution is not au#@shaving failed to satisfy the necessary optitpaonditions due
to the presence of the delay and advanced ternesefiine, this algorithm examines the approximatatiems with the
limiting solution. Using the finite difference thed for its differential constraint, discretizatiof its time interval and
with the application of the penalty and Multiplimethods [1], an unconstrained discretized formoitatif the problem is
obtained. With this formulation, a bilinear formpegssion of the problem is recast. which formsaanfwork for the
construction of an operator based on Modified Umbp’'s reviewed method[2] on function minimizatiop Fletcher
and Reevesl[3] . A sequence of estimates is gtatbley conjugate gradient method (CGM) with stepétmmulated by
the minimization rule. Finally, these estimates aramined for linear convergence through a convergeanalysis
scheme[4]. An hypothetical constrained problerith wector-matrix coefficients are examined tsttine efficiency of
the developed scheme for solution and convergepo#file of the objective function values. In thext section, a
general quadratic control problem is consideredofir developed scheme.

2.0 Generalized Problem

Z

MinimizeJ(t, i, X, u), :I(x(t)T Px(t)+ut) Qu(t))dt (2.1)
such that i
%(t) = AX(t) + Bx(t—r) +Cu(t), x(0)=x x(t)=h(),t0[-r,0] 2.2)
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where X(t), u(t)eR?, P,Qare 2 x 2square symmetric matrices with, Band C as 2 X 2matrices not necessarily

symmetric and K denotes the Cartesian product ef filowing two spacesK = H,[0,0] x LJ[0, 0], where
H,[0, 0] stands for the Sobolev space of the absolutelgirmasus functionsx(*) and X(*) are square integrable over

[0,0] and Lg[O,J] stands for the Hilbert space consisting of eqeiveé classes of square integrable functions from
[0,0] to RY.

3.0 Discretization

In this section, we shall convert the consediontinuous problem in to un constrained disardt problem
using discertization for its time interval andife difference method for the constraint respetyi

By discretizing (2.2), using [1,4], subdivide [, into n equal intervals |ft.1] at mesh points gx;<xp< Xg< ...<X
n1<Xn, Where n-1 is the number of partition points s#marbitrarily, thus having (n+1) partitigroints, with ¥=j4j,
j=0,1,2,...,n, andAj =Ak is the fixed length of each subinterval for j=k

k_
Lett, = Oandt, = jAj, k=1,23..n, t,=Z.x(k)=x(t.). u(k) =u,(t),k=0.1,...n.
j=1

By Euler’s scheméz or finite difference method ,

x(k) = (x(k +12) - x(k))/ ak k=0,12,....N-1

X (t) = A% (tk) + BX, (tk - rk) +Cu, (t, )

(x(k+2)=x(K)) /8, = Ax, (8)+Bx, (1~ 1) +Cuy (&)

(A X)) — A% (t,) —Bx (t, —1.)—Cu,(t.)), % (0)=0 (3.1)
We then have the generalized problem (2.1) érfolhm:;

M 3y = 78, (%, 607 P, (8) 1,007 Qu, (1)) e
subject to e
(Xk+1 (tk+1) X (tk))/Ak = Axk (tk) + Bxk (tk - rk) +Cuk (tk) 3.3
%(0)=0 |

4.0 Application Of The Penalty And Multiplier Parameters.
Here, the constrained problem is converted inta@gonstrained approximated problem to eliminateesomall of the
constraints and add to the objective function entetich prescribes a high cost to infeasibilityrsi

Applying the penalty function and the multipliermethod [5,7,8] to (3.2)-(3.3), we obtain afespanding and
collecting like-terms,

MinJ06. 1) =S 06t a(t) +U(t) T AU() +3(t) ()

X6 Y GG X (b1 W N +U Gy (LIl
+x (b _rk)T)&(tk _rk)nk'*'uk(tk)T)ﬂ((tk)nkz'*')&(tk)T)ﬂ((tk —r k3 (4.1)
+U, (6" X (b ~rIMkA+A €)' Yie(t) = A ) % (6 — A" A Au, (&)
—A ) AAX () = At ABX (b —1) = A 6) AU (L)}
where Y, (t.) = %.,,(t,..).a, = g+2ud A+D A" Au+PA,, B =QA +0,°C'Cu, ¢, ==2u—2uN A,
N =-2uAB", m =pA’B'B.m, =-20Cp, m, = 2t0\C+ 2uDCT A,

M, = 240,’BT A+ 240 B m, = 240, *CTB.
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5.0 Construct of Operator V

We now formulate the bilinear form expression fr@rl) serving as framework for the construction

<Zkl (tk) 'VZkZ (tk )> = i{akxkl(tk )T XkZ(tk) + ﬁkuk l(tk )T uk Z(tk)

* Vi (t )T Yieo (ti) 4+ % (B )T Yio(t) G+ Xk2(tk)T Yia(t) &

X (8 T )T Yo (B ) M + %o (8 — rk)T Yier () e + U 4(8) " Vi ot )M

U, (tk)T Yia ()M + Xt — rk)T X ot —T )M +u, 1(tk)T % AL )M,

+ ukz(tk)T Xa(t)me, + Xkl(tk)T X ot ~rIMegt X Z(tk)T XAt —rom; (6.1
+ ukl(tk)T Xea(ty =T )M, +U 2(tk)T X ot =T IM

A (6" Yio(t) + Aot Yiealti) = Aealti)" X olti) = A A8 % At

= Aty ) X2 (LA A=A 2(tk)T X (t )AkA_/‘kl(tk)T X (t —1)AB

= Ao (t) X (t, —1)AB = Ay (£ ) U5t )AC = A (8 ) U (£ )A,C
And the operator is constructed thus;

Letting,
Vll V12 V13 V14 Xk Z(tk) Vll
VZ (t )= V21 V22 V23 V24 uk Z(tk) — V21 Z’S
K2 V31 V32 V33 V34 h( th) V31 .
V4l V42 V43 V44 Ak &tk) V41

where Z(t,) = (% (t,), u (t,), h &), A ))-

Using Euler's scheme and simplifying (5.1), we havehe following governing equation

a6 V2o (8 D = 2000 (6) % (8) + Atken(t) Ui (8)

% (b =) e (b= 1) M+ Xea (6) % 2(t) #

* X (e )T %o (B ) Bk + % (1 )T X 2(t) Dt

AP () %o (8) +%ea () Xe S+ %ea(te) X o(t) B (5.3)
%o ()" KeDiC + Xer (b 1) %o,

+ % (G =) Ko (AN + X5 (L =T )" Xea(t N,

+ %o (G =) Xea(B)AN + Uy (8T X ot Me+ U 1(8)T X LMy

From (5.3) following[9], we initiate the next stap a theorem for establishing the operator V:
THEOREM 1

Let the initial guess of the conjugate algorithm&g(t, ) so that

ZoT (t) = (X, Ug, Ny, Ap).
Then the control operator V associated with theegalized problem (2.1) satisfyingVz, , is given by

Z,(t) = (sz(tk)!ukz(tk)ihd(tk)l/]k Z(tk)) :
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PROOF OF THEOREM 1
Solve for X, (t) by settingu,, (t,) = h,(t,) = A ,(t,) = 0in (5.3) and collecting like-terms, we have

e () V2o () = XX (6L, + 426, +1, +m)
+ XkZ(tk)T (ILIAk +Akck) + XkZ(tk + I’.k)(nk + rn(3 + rrl() + XkZ(tk + rk)nkAk]
5T DB, + 4+ 6) o8, +U T (X ALIM, + M+ m, )

+ %, (68, M1+ hy L [X AL+ 1)+ Mg+ m) + X (L +r)nA,]
+/]k1(tk)T[Xk2(tk)(_Ak(A+ B)) + sz(tk)Ak]

(5.4)
(Zey () VZi, (8D = Zn:{xkl(tk)TV11+ % L) TV, +u () VLR () TV oFA )TV (5.5)
where -
Vai(t) = X (6 ) (A (A+B) + X ,(t) A, (5.6)
Va(t) = Xeo(ty 1N + Mg +m) + Xt +r)nd, (5.7)
V(L) = X (G (A (M + M, +m Q) + X At )A M, (.8
To determind/, (t,) , define
Q(t) =X (@ +p+26 +n M)+ Xt ), (W+G))+X ot +r)AN (5.92)
Xt )Nt M +m)
i (6) = X (A (1 + N +6) + X (8)-0,° (5.9b)

Now, Q,(t,) and f,(t,) are continuous functions on [0,2¥,,(t, ) is continuous and at least twice differentiable on
[0,Z]. HenceQ,(t,)-V,(t)and f,(t)-V,(t) are continuous on [0,Z], X(.)OD,[0,Z] such that
x(0) =x(Z) = Oand

Z
JOBIQAR) V(0] +34 0 ) ~VEOD o, 8 (5.10)
0
Hence,
d .
E( fi(t) _Vll(tk)) =Qy(t) ~Vi(t) (5.11)
k
So
fl(tk) _Vll(tk) = Ql(tk) _Vll(tk)’ O< t, < T. (5.12)
Let
\‘/;Ll(tk) =Vi(t) = f.1(t|<) -Q(t) =qa(t) (5.13)
This is a second order di.fferential equation thetds to be solved. So we impose the followingahdonditions;
V,,(0)=p,and V,;,(0)=r, (5.14)

where p, and r, are to be determined.

Let Q(s) =L(q(t,)) and V,,(s) = L(V,,(t,)) denote the Laplace transform @f(t,) and V,(t,) respectively.
Taking the Laplace transform of (5.13), we have,

52\/11(5) - PS— rl_Vll(S) =Q(s) (5.15)
Q9 , ps , 1

V,(s) =
() -1 s*-1 s°-1

(5.16)
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We take the Laplace transform of (5.16) and usealoition theorem for the second term to obtain

Vi, () :jq(sK)sinh(tk - )Jds + p, cosht r, sint( ) (5.17)
But
Q,(2) -Viy(2) =0, Q,(0)-V,,(0)= Oand Q,(OF p. (5.18)

So V1,(0) = p;.
From (5.17) and (5.18),

5
Vu(T) = [a(s)sinh(T =)+ p, coshT -, sinfi( ) (5.19)
0
But 9(s,) = fl(Sk) - Q,(s,)in (5.13). So, (5.17) becomes

V;;(t) = =sinh@)f, (O)+ [ f, &, )cosht, —s, Jis,

z 8)
~[Q,(s)sinhg, —s, )ds, +p, coshg Y r, sinti(
and i
1 7 _ 7 o
= n(z) SN @) O [ 15 c0ShE =5, s, +] 0, 6 )sini -, 0 (5.21)
-Q,(0)coshZ *+Q, Z )}

Solve for Uy, (t, ) , by settingX,, (t, ) = he,(t) = A (t) =0 - X ,(t,) = 0 in (5.3) and collecting like-terms and
following the same patterns as in equations (23p121), we have,

minJ (X, ,u, ) = z Uy (t )T U, (B + U, (G )T Xea (b )M, + U, L )T X 1t A M,
k=0

(5.22)
uk2(tk )T Xkl(tk)Akn‘LZ + uk Z(tk )T Xk l(tk - r‘k )Akm 4= Ak 1(tk )T uk Z(tk)AkC
Applying remark,
. _ _ _ hkl(tk)7 tk D[—I’, O]
(i) Xa (te = 1) = X () = {Xkl(tk)i t, 0[0,Z—r]
to equation (5.22), we have
mind (%, U )= D X' GG M M) +U b M + %1 U (L) Am ] 5.23)
k=0 .

g GUat) AN UL+ M +A (L) U ((-AQ]
minJd (XU, ) = Zn: X (b )TV12 + %, (& )Tv12+ Uy o(t, )TV22+ h (& )TV ot A )TV 4 (5.24)

where
V,o(t) = U, (t)" (-4,C) (5.25)
Vo, (t) = U,(t + rk)T m, (5.26)
Voo (t) = Uy o(t, ) B .2B)
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Q,(t) = ukz(tk)T (M, +m,) +u (L, + rk)T m, (5.28)
f,(t) = usz (t)A M, (929
z z
Vio () = SInN@)F, 00+ [ f, 6 )costt, -5, 95, - [Q, & Isinff-s, o
0 0 -

+p,cosh(, )+, sinh, )
wherer, =, with the exception thaf, Z f, and Q, # Q, as in equation (5.21).
Solve for h,(t, ), by setting X, (t,) =U,,(t.) = A,(t) =0, implying that X,(t,) =0 in (5.3). By

remark, settingX,,(t, —r.) =h.(t,) after the above, collecting like-terms and follogithe same steps as in
(5.3) to (5.21), we have

minJ (.U, ) = ixkl t) (R ()M + M+ M1+ X, (8) Th ) An,]
g (1) Tt m ] +h(6) Th {t) m] +A(t) "h (t)[ -A, B

(5.31)
minJ (Xk Uy ) = Z Xa (tk )TV13 + Xkl(tk )Tv13+ Uy 1(tk )TV23+ h< 1(tk )TV ast /]k £tk )TV s (632
k=0
Where,

V,s(t) = h,(t)'[(-A,B)]

(5.33)
Vi) = he, ()" m, 5.34)
Vaa(t) = Reo(t)m, (5.35)
Vi (1) = ~SInh@ )fy (O)+ [ T 6 Jcostt =5, 95 =[O, ( )sin=s o

+p,cosht, )+, sinh, )
wherer, =1, except thatf, Z f and Q, # Q. asin (5.21).
Solve for A, (t,), by setting X, (t,) =u,,(t,) =h.(t) =0, implying that X,(t,) =0 in (5.3). By

remark, settingX,, (t, —r,) = X.,(t,) after the above, collecting like-terms and follogithe same steps as in
(5.3) to (5.21), we have

minJ(x,u,) = Zn: X ) e G, (A+ B)I+ Xy (8) T [A AL A (5.37)

+ ukl(tk )T[/]kz(tk)(_Ak] + h»(l(tk) T[ /1k2(tk)( _Ak)] + /]k( tk) !

minJ (X, U, ) = z X (b )TV14 X (& )Tv14+ Uy ot )TV24+ h (. )TV ait A b )TV a  (5:38)
k=0

where,
V() =0 (5.39)
Vau (L) = At (-4,) (5.40)
Voo (L) = Aco(t) (-2y) (5.41)
Q,(t) = A.(t)" (-4, (A+B)) (5.42)
f,(t) = A, ()4, (5.43)
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Having constructed operator V, written as

Vit Vi Vi Vg

2 Voo Vi Vo
Var Vg Vg Vy,
Vao Vo Vg Vg

V = (5.44)

With this generalized scheme and associated operatprogram is written using the Conjugate Gradigiethod
Algorithm to execute and examine the convergenoélerof the following sampled problem P1 with matcoefficients.
The result is tabulated in the following table filed penalty constant per cycle and updated Lagrangian multiplier.
Please note that the state- control variables aggldngian multiplier are each 2-entry vector.

6.0 Data And Analysis
Example Problem P1

minJ(,u):i((xl(t)%xz(t))z+§1xf(t)+2u1(t)+—;u£(t)+—;uz(t))jdt
such that

%,(1) =X, (0) = %,() + Xt = 1) +2x,(t = Jo)+ 21,0)+ A1,¢)

%, (1) = %, (t) + X,(t) = % (t =.5)+ x,(t = .5)-u,¢)
x(t)=1+t, x,t)=t, OtO[-.5,0]
x(0)=1, x,(0)=.5, u, (OF 1, u, (OF .5

o3 (3 a0
wee p=(1 3 o=(3 ) a3 ) oo ] (5]

From the above problem, we obtain the following [€abl and 2 and Figures 1 and 2 showing the saloé the
objective functions per cycle; the convergenceosaprofile; the state-control variables and theusoidal behaviour of
the Lagrangian Multiplier parameter respectively.

TABLE 1 ; Objective Function Value Per Cycle

CYCLE PENALTY OBJECTIVE CONSTRAINT
NUMBER PARAMETER FUNCTION SATISFACTION
VALUES

1 10" 0.6415 1.6530E-1

2 10° 1.1974 3.9512E-2

3 10° 1.3707 4.8877E-3

4 10° 1.3928 5.0150E-4

5 10° 1.3951 5.0282E-5

6 10° 1.3953 5.0296E-6

7 10’ 1.3953 5.0297E-7
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TABLE 2: Convergence Ratio Per Cycle.

CYCLE NUMBER
X — X

—<1
X, — X

CONVERGENCE RATIO, ‘

0.2397
0.1335
0.1034
0.0995.
0.0914
0.0826
0.0795

N[OOI WIN(F

The following Figures, 1 and 2, show the state-mnariables and the Lagrangian Multiplier- paré@neespectively.

1

04

0ar

(@ )

0 s . . ‘ . ‘ . . . A . . ‘ . . . . ‘ .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

O] @

FIGURE 1(a, b, c and d): The variation of tregestand control variables with respectto time t
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0.5 T T T T T T T T T

0.1 n2z 03 04 05 0B 07 08 09 1
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D1 T T T T T T T T T

01 A

02k i

041 =

-0.5 =

NERH -

_D? 1 1 1 | | 1 1 1 1
1] 0.1 2 03 04 05 06 07 08 09 1

t
(b)
FIGURE 2(a and b) : The behaviour of the Lagrangian Multipler Paramed 2-entry vector

7.0 Comments and Conclusion

Table 1 exhibits the number of cyclesgeahye function values and constraint satisfactigthh sampled numerical
solutions appreciating to 1.3953. We observe tlsathe penalty parameter gets bigger, the objedtimetion value
increases and appreciates to 1.3953 at'fren@l 7' iterations. Also, the constraint satisfaction @gghes zero initially
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from 1.6530E-1 to 5.0297E-7. This signifies thag tomputed numerical solution 1.3953 is the appneaié solution to
the original problem with a level of tolerance 02, +.0025) used in the programming.

Table 2 shows the performance of the dgpad Algorithm by examining the convergence analy$he state
variables generated by conjugate gradient me(figaéM) are analyzed and found with ratios betweean@ 1. This
shows that the analysis is linearly convergent.

Figure 1(a, b, c, and d) shows graphjctile behaviour of the state and control variabl@$.interest is the fact
that the control variable approaches zero, thusifgigg control compliance at the end of the iterat

Figure 2 (a and b) shows the sinusoiddialvior of the Lagrangian multiplier parameter. Tinst entry with
domain [0,1], behaves sinusoidally starting witpditude between -2.00 and +.200 and ending witplande between
-.700 and +.100. As for the second entry, it bekasinusoidally also, starting with amplitude betwe.605 and -.65 and
ending approximately on zero. This shows the datation of the Lagrangian Multiplier to apprecidate objective
function value 1.3953.

The Algorithm shows its effectiveness tagives approximate solution to problem not sbleaanalytically, since
the control variable appreciates to zero as itemationtinues. Therefore, the developed Algorithra tiamonstrated its
significance, effectiveness and reliability. Solgems belonging to this type of research not sdévabalytically can be
solved approximately by this developed Algorithm.
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